Chapter -3 Sensors and Transducers

နည်းနှစ်နည်းဖြင့် တိုင်းတာမှု(measurement)များ ပြုလုပ်နိုင်သည်။

တိုက်ရိုက် တိုင်းတာခြင်း(Direct Method)

Direct method နည်းသည် တိုင်းလိုသည့် အရာ(unknown quantity)ကို တိုက်ရိုက် တိုင်းတာခြင်း ဖြစ်သည်။

တစ်ဆင့် တိုင်းတာခြင်း(Indirect Method)

Indirect method နည်းသည် တိုင်းလိုသည့် အရာ(unknown quantity)ကို တိုက်ရိုက် တိုင်းတာရန် မဖြစ်နိုင်သည့်အခါ ဆက်စပ်နေသည့် အခြားတန်ဖိုးကို တိုင်းယူ၍ unknown quantity ၏ တန်ဖိုးကို တွက်ယူသည့်နည်း ဖြစ်သည်။

ဥပမာ- ထုထည်စီးနှုန်း(volume flow rate)ကို တိုင်းရန် မဖြစ်နိုင်သည့်အခါတွင် အလျင်(velocity)ကို တိုင်း၍ ဧရိယာ(cross sectional area) နှင့် မြှောက်(multiply)ယူနိုင်သည်။

p.o Classification Of Instruments

Absolute Instruments

တိုင်းလိုသည့်အရာ၏ တန်ဖိုးကို တိုက်ရိုက် တိုင်းတာနိုင်သည့် instrument များကို "Absolute Instrument" များဟု ခေါ် သည်။

Secondary Instruments

Instrument တစ်ခုကို calibrate လုပ်ထားပြီးဖြစ်သည့် absolute instruments နှင့် နှိုင်းယှဉ်ပြီး calibrate လုပ်ထားသောကြောင့် secondary instrument များဟု ခေါ် သည်။

Instrument များ၏ function များကို သုံးမျိုး ခွဲခြားနိုင်သည်။

- (၁) တန်ဖိုးများကို ဖော်ပြရန်အတွက် တိုင်းတာခြင်း (Indicating function) ဥပမာ- အခန်းအပူချိန်၊ ရာသီဥတု အပူချိန်
- (၂) တန်ဖိုးများကို မှတ်တမ်းတင်ရန်အတွက် တိုင်းတာခြင်း (Recording function) ဥပမာ- လျပ်စစ်မီတာ၊ လျပ်စစ်ဓာတ်အားသုံးစွဲနှုန်း
- (၃) Device တစ်ခုကို ထိန်းချုပ်မောင်းနှင့်ရန်အတွက် တိုင်းတာခြင်း (Controlling function)

ဥပမာ- Chilled water flow valve ကို control လုပ်ရန်အတွက် supply temperature ကို တိုင်းတာခြင်း ဖြစ်သည်။

Measurement system များကို အသုံးပြုသည့် လုပ်ငန်းများ(application)

(c) Monitoring of process and operation.

- () Control of processes and operation.
- (p) Experimental engineering analysis.

Sensor များသည် control system တွင် မရှိမဖြစ်ပါဝင်သည့် အဓိက အစိတ်အပိုင်းများ ဖြစ်ကြသည်။ အရည်အသွေး ညံဖျင်းသည့် sensor များ နှင့် စနစ်တကျ မတပ်ဆင်ထားသည့် sensor များမှ ဖတ်ယူထားသည့် တန်ဖိုးများကို အသုံးပြု၍ အဆင်မြင့် စက်ခဲသည့်(sophisticated) လုပ်ငန်းများကို ဆောင်ရွက်ရန် မဖြစ်နိုင်ပေ။ ဤအခန်း(chapter)တွင် building control system များတွင် အသုံးပြုသည့် sensor များကိုသာ ဦးစားပေး ဖော်ပြထားသည်။

Sensor များကို အသုံးပြု၍ controlled variable များ၏ တန်ဖိုးကို တိုင်းတာကြသည်။ မည်သည့် တိုင်းတာမှုမျှ မပြုလုပ်ပဲ မည်သည့်အရာကိုမျ control လုပ်ရန် မဖြစ်နိုင်ပါ။ Operator များသည် sensor များက ဖတ်ယူထားသည့် တန်ဖိုးများကို စောင့်ကြည့်(monitoring)ကာ plant တစ်ခုလုံး၏ အခြေအနေကို သိနိုင်သည်။

ပုံ ၃-၁ Anatomy of a sensor system

HVAC လုပ်ငန်း(application)များတွင် အသုံးများသည့် sensor များမှာ temperature ၊ Carbon Dioxide (CO2)၊ Carbon Monoxide (CO) ၊ Relative Humidity ၊ dewpoint ၊ differential pressure ၊ velocity sensor နှင့် flow sensor တို့ဖြစ်သည်။ Sensing technology သည် အလွန် လျှင်မြန်စွာ တိုးတက် ပြောင်းလဲနေသည့် ပညာရပ် ဖြစ်သည်။ ထိုကြောင့် sensor အသစ်များ အဆက်မပြတ် ထွက်ပေါ် နေလေ့ ရှိသည်။

တိုင်းတာရမည့်အရာ(measured variable)မှ control module အတွင်းသို့ input အဖြစ်ရောက်ရှိသည့် နေရာအကြားရှိ process အားလုံးကို sensor ဆိုသည့် စကားလုံးဖြင့် မရေမရာ ဖော်ပြလေ့ ရှိသည်။ Sensor တစ်ခုက ဆောင်ရွက်ရမည့် လုပ်ငန်း(function)များ နှင့် အစိတ်အပိုင်းများကို ခွဲခြားဖော်ပြရလျှင် (၁) **Sensing element:** တိုင်းတာလိုသည့် အရာ(measured variable)ကို သိနိုင်၊ အာရုံခံနိုင်သည့် ကိရိယာကို sensing element ဟုခေါ်သည်။

Chapter-3 Sensors and Transducers

- (၂) **Transducer:** Sensing element မှ တိုင်းတာချက်များကို electrical signal အဖြစ်သို့ ပြောင်းပေး နိုင်သည့် active device ကို transducer ဟုခေါ် သည်။
- (၃) **Transmitter:** တိုင်းတာချက်များကို electrical signal အဖြစ် control module ဆီသို့ ပို့ပေးသည့် device ကို transmitter ဟုခေါ် သည်။

လက်တွေ့တွင် transducer နှင့် transmitter တို့ကို ပေါင်းလျက် အတူတကွ တွေရလေ့ရှိသည်။ Transducer နှင့် transmitter တို့၏ ဆောင်ရွက်ချက်များကို "**Signal Conditioning**" ဟုခေါ် ဆိုသည်။

Signal conditioning ၏ လုပ်ငန်းများမှာ

- (c) Filtering to remove noise
- (၂) Averaging over time နှင့်
- (၃) Linearization တို့ ဖြစ်သည်။

အချို့သော system များတွင် sensing element ကို controller နှင့် တိုက်ရိုက် ချိတ်ဆက် ထားလေ့ရှိသည်။ ဥပမာ thermocouple ကို controller နှင့်တိုက်ရိုက် ချိတ်ဆက်ထားပြီး signal conditioning ကို controller module အတွင်း၌ ဆောက်ရွက်လေ့ရှိသည်။

Transmitter

Transmitter ဆိုသည်မှာ signal တစ်ခုကို လက်ခံပြီးနောက် ထို signal နှင့် သက်ဆိုင်သည့် အချက်အလက်(data)များကို အခြားသော device တစ်ခုဆီသို့ ထပ်မံထုတ်လွှတ်သည့် ကိရိယာ(device)ကို **Transmitter** ဟုခေါ် သည်။

Transmitter မှ ထုတ်ပေးနိုင်သည့် signal အမျိုးအစားများမှာ 0–5 volt ၊ 0–10 volt or 4–20 milliamp (mA) တို့ဖြစ်သည်။ HVAC လုပ်ငန်းခွင်တွင် voltage output များကို အလွန်အသုံးများသည်။ သို့သော် 4–20 mA signal သည် ပို၍ စိတ်ချ(robust)ရသည်။ အထူးသဖြင့် ဝါယာကြိုး ရှည်သည့်အခါ နှင့် စက်မှု လုပ်ငန်းများတွင် ပို၍ သင့်လျော်သည်။

Sensor နှင့် transmitter တို့ နှစ်ခုပေါင်းထားသည့် accuracy ကို ဖော်ပြလေ့ ရှိသည်။

Sensor များကို နည်းအမျိုးမျိုးဖြင့် ထုတ်လုပ်နေသောကြောင့် sensor များ၏ interchangeability နှင့် interoperability တို့သည် control system များအတွက် အလွန်အရေးကြီးသည့် အချက် ဖြစ်သည်။

Interchangeability သည် ထုတ်လုပ်တစ်ယောက်ထံမှ sensor ဖြင့် အခြားထုတ်လုပ်သူ တစ်ယောက်ထံမှ sensor ကို လဲလှယ်တပ်ဆင်နိုင်မှု(physical replacement)ကို ဆိုလိုသည်။

Interoperability ဆိုသည်မှာ sensor များကို တစ်ခု နှင့် တစ်ခု လဲလှယ် တပ်ဆင်သည့်အခါ control system နှင့် ကိုက်ညီမှု ရှိ၊ မရှိ(operability)ကို ဆိုလိုသည်။

Sensor များကို ရွှေးချယ်ရာတွင် installation time ၊ accuracy ၊ precision ၊ reliability ၊ repeatability ၊ durability ၊ maintenance ၊ repair/replacement costs ၊ compatibility စသည်တို့ကို အလေးပေး စဉ်းစားရန် လိုအပ်သည်။

Status ကို ဖော်ပြသည့် sensor များသည် binary output(on/off)ကို ထုတ်ပေးသည်။ Setpoint တန်ဖိုးထက် များလျင် "ON" output သို့မဟုတ် setpoint တန်ဖိုးထက် နည်းလျင် "OFF" output ထုတ်ပေး သည်။

Sensor အများစုသည် mechanical device များ ဖြစ်ကြသည်။ Thermostats ၊ humidistats နှင့် pressure switches တို့ ဖြစ်ကြသည်။

Status ဖော်ပြရန် သို့မဟုတ် software interlock လုပ်ရန်အတွက် sensor ၏ output ကို controller ၌ digital input အဖြစ် ရိတ်ဆက်သည်။ ဘေးအန္တရာယ်၊ လုံခြုံရေးနှင့် သက်ဆိုင်သည့်(safety-critical) interlock များကို ဝါယာကြိုးဖြင့်သာ(hardwired) ရိတ်ဆက်လေ့ရှိသည်။ Software interlock ကို အသုံးပြုခွင့် မရှိ။

Sensor ၏ status များသည် voltage-free contact များ ဖြစ်ကြသည်။ Analogue sensor များသည် measured variable ၏ တန်ဖိုးကို electrical signal အဖြစ်သို့ ပြောင်းလဲပေးပြီး controller ဆီသို့ ဝို့ပေးသည်။ တိုင်းထားသည့် တန်ဖိုးများကို input signal အဖြစ် control လုပ်ရာတွင် အသုံးပြုသည်။

Analogue sensor များကို အောက်ပါအတိုင်း ခွဲခြားနိုင်သည်။

- (က) **Passive devices:** Transducer မပါဝင်ပဲ sensing element သာ ပါဝင်သည့် device ကို passive device ဟုခေါ် သည်။ Signal conditioning လုပ်ခြင်းကို controller အတွင်း၌သာ ပြုလုပ်သည်။ ဥပမာ resistance type temperature sensor ဖြစ်သည်။ လျှပ်စစ်ဓာတ်အားပေးရန် မလိုပဲ controller ၏ analogue input နှင့် passive sensor ကို ဝါယာကြိုး(field wiring)ဖြင့် ရိုတ်ဆက်ထားသည်။
- (ခ) Active devices: Sensing element နှင့် signal conditioning လုပ်ရန် transducer နှင့် transmitter တို့ ပါဝင်သည့် ကိရိယာကို active device များဟု ခေါ်သည်။ Controller ၏ analogue input နှင့် passive sensor ကို ဝါယာကြိုး(field wiring)ဖြင့် ချိတ်ဆက်ထားသည်။ Transmitter မှ ထုတ်ပေးသည့် industry standard electrical signal များကို Table 3.1 ၌ ဖော်ပြထားသည်။

Table 3.1 Standard signals for transmission of sensor readings		
Signal Application		
0-10 V DC	Standard for HVAC applications	
4–20 mA	Common in process control	
Voltage-free contact	For status indication	
se Energy and flow measurement		

4 to 20 mA signal ကို သုံးလျင် ဝါယာကြိုး နှစ်ချောင်း(two-wire connection)သာ လိုသည်။ Hostile environments နှင့် process control များတွင် 4 to 20 mA signal ကို အသုံးပြုကြသည်။ 0–10 V signal ကို သုံးလျင် ဝါယာကြိုး သုံးချောင်း သို့မဟုတ် လေးချောင်း လိုအပ်သည်။ ကုန်ကျစရိတ် သက်သောကြောင့် HVAC systems များတွင် အသုံးပြုကြသည်။

Intelligent sensor များသည် တိုင်းယူထားသည့် တန်ဖိုး(measured value)များကို သို့မဟုတ် အခြေအနေ(status)များကို digital signal အဖြစ်သို့ ပြောင်းလဲပြီး တစ်ခြားသော intelligent device များဆီသို့ control လုပ်ရန်အတွက် သော်လည်းကောင်း၊ တိုင်းတာထားသည့် တန်ဖိုးများကို ဖော်ပြရန်အတွက် ပေးပို့နိုင်စွမ်း

ရှိသည်။ Network အတွင်းရှိ device များသို့လည်း ပေးပို့ နိုင်သည်။

ထို့အပြင် intelligent sensor များသည် အောက်ပါ လုပ်ငန်းများကို ဆောင်ရွက်ပေးနိုင်သည်။

- (ෆා) Checking upper and lower bounds
- (\mathfrak{D}) Calibration and compensation functions
- (o) Calculating derived values, e.g. enthalpy.

၃.၂ အဓိပ္ပာယ် ဖွင့်ဆိုချက်များ(Definition of Terminology)

Ambient

Sensor ရှိရာနေရာ သို့မဟုတ် control system ရှိရာနေရာ၏ အနီးဝန်းကျင်ကို ဆိုလိုသည်။

Attenuation

Attenuation ဆိုသည်မှာ အချိန် ကြာမြင့်သည်နှင့်အမျှ signal ၏ magnitude ခြင်းကို ဆိုလိုသည်။ တစ်နည်းအားဖြင့် signal strength အားနည်းသွားခြင်း ဖြစ်သည်။

Calibrate

အမှန်တကယ် ရှိသည့်တန်ဖိုး(true value) နှင့် sensor ၏ output တန်ဖိုးတို့သည် လက်ခံနိုင်သည့် accuracy သို့မဟုတ် uncertainty အတွင်းရှိအောင်ပြုလုပ်ခြင်းကို calibrate လုပ်သည်ဟု ခေါ် သည်။

Closed loop

Relates to a control loop where the process variable is used to calculate the controller output.

Range

Device တစ်ခု operate လုပ်မည့် upper limit နှင့် lower limit အကြားသည် Range ဖြစ်သည်။

Rangeability

Rangeability ဆိုသည်မှာ အမြင့်ဆုံးစီးနှုန်းနှင့် အနိမ့်ဆုံးစီးနှုန်း အချိုး ဖြစ်သည်။ Control လုပ်နိုင်သည့် flow range ဖြစ်သည်။

$$Rangeability = \frac{Q_{min}}{Q_{max}}$$

Reliability

Reliability ဆိုသည်မှာ device တစ်ခုသည် သတ်မှတ်ထားသည့် specification သို့မဟုတ် စံချိန် စံညွှန်းအောက်တွင် အကြိမ်ပေါင်းမည်မျှ operation လုပ်နိုင်သည် သို့မဟုတ် အချိန်(operating hours)မည်မျ တာရှည်အောင် အလုပ်လုပ်နိုင်သည်ကို ဖော်ပြသည့် ဖြစ်နိုင်ခြေ ဖြစ်သည်။

Resolution

Resolution ဆိုသည်မှာ တိုင်းတာသိရှိနိင်သည့် အသေးငယ်ဆုံးသော ပမာဏ(smallest interval) ဖြစ်သည်။

Self Heating

Electrical excitation ကြောင့် sensor အတွင်း၌ အပူခိုန်မြင့်တက်လာသည်။ Self-heating သည် ဖြတ်စီးသွားသော လျှပ်စစ်စီးကြောင်း(current)ကြောင့် ဖြစ်သည်။

Sensitivity

သတ်မှတ်ထားသည့် input တန်ဖိုး ပြောင်းလဲခြင်းကြောင့် ပြောင်းလဲသွားသည့် output တန်ဖိုး ဖြစ်သည်။

Stiction

Static friction တစ်မျိုးဖြစ်သည်။ တစ်စုံတစ်ခု စတင် ရွှေ့လျားသွားရန် အတွက် ခုခံထားသည့်အား(resistance to motion) ဖြစ်သည်။

Transducer

Temperature or pressure စသည့် physical quantity ၏ တန်ဖိုးကို volts or millivolts or resistance change အဖြစ် ပြောင်းလဲပေးသည့် element သို့မဟုတ် device ကို transducer ဟုခေါ် သည်။ **Accuracy**

Accuracy ဆိုသည်မှာ တိုင်းတာမှု(measurement)သည် မည်မျှ တိကျသည်ကို ဆိုလိုသည်။ တစ်နည်းအားဖြင့် accuracy သည် တိုင်းတာမှုတွင် ပါဝင်နေသည့် အမှားပမာက(error in the measurement) ဖြစ်သည်။ တိုင်းတာမှု(measurement)များ ပြုလုပ်သည့်အခါ ဖြစ်ပေါ် သည့် အမှားပမာက(amount of error) ကို accuracy ဟု သတ်မှတ်သည်။ အမှားပမာက(amount of error)များလေ accuracy ညံ့ဖျင်းလေ ဖြစ်သည်။ တစ်နည်းအားဖြင့် အမှန်တကယ်ရှိသည့် တန်ဖိုးသည်(true value)သည် တိုင်းတာမှု(measurement)မှ ရရှိသည့် တန်ဖိုးနှင့် မည်မျှ နီးစပ်သည်ကို ဆိုလိုသည်။

Accuracy သည် sensor တစ်ခု၏ တိုင်းတာသည့် ကိရိယာများ၏ သင့်လျော်မှု(suitability measuring equipment) အပေါ်တွင် မူတည်သည်။ Accuracy သို့မဟုတ် total error in the measurement သည် linearity၊ hysteresis နှင့် repeatability တို့နှင့် လည်းသက်ဆိုင်သည်။

Reference accuracy ဆိုသည်မှာ သတ်မှတ်ထားသည့် အခြေအနေ(reference conditions) တွင် ရရှိနိုင်သည့် accuracy ဖြစ်သည်။ သတ်မှတ်ထားသည့် လေထုအပူချိန်(ambient temperature)၊ ဖိအား(static pressure) နှင့် လျပ်စစ်ဓာတ်အား(supply voltage)တို့သည် reference condition ဖြစ်သည်။

Accuracy ကို error သို့မဟုတ် uncertainty ဖြင့်လည်း ဖော်ပြနိုင်သည်။ Systematic bias error နှင့် random errors (imprecision) ဟု၍ နှစ်မျိုးရှိသည်။ အမှန်တကယ် ရှိသည့် တန်ဖိုး(true value) ကို တတ်နိုင်သမျှ တိကျမှန်ကန်အောင် ဖော်ပြနိုင်စွမ်းသည် accuracy ဖြစ်သည်။

Reporting Accuracy

အောက်တွင် minimum acceptable reporting accuracie ဖော်ပြထားသည်။

Measured Variable	Reported Accuracy
Space temperature	± 0.5 degrees C (± 1 degrees F)
Ducted air temperature	±1.0 degrees C [±2 degrees F]
Outdoor air temperature	±1.0 degrees C [±2 degrees F]
Water temperature	±0.5 degrees C [±1 degrees F]
Relative humidity	±2 percent RH
Water flow	±5 percent of full scale
Air flow (terminal)	±10 percent of reading
Air flow (measuring stations)	±5 percent of reading
Air pressure (ducts)	±25 Pa [±0.1 "W.G.]
Air pressure (space)	±3 Pa [±0.001 "W.G.]
Water pressure	±2 percent of full scale *Note 1
Electrical Power	5 percent of reading

ပုံ ၃-၃ Accuracy terminology

Range of Operation

အမြင့်ဆုံးနှင့် အနိမ့်ဆုံး operating limit တို့အကြားသည် ကိရိယာများ ကောင်းစွာ အလုပ် လုပ်နိုင်သည့် range of operation ဖြစ်သည်။ ဖော်ပြထားသည့် specification များသည် range of operation အတွင်း၌သာ အကျုံးဝင်သည်။ Range of operation ၏ အပြင်တွင် ကျရောက်နေသည့်အခါ အမှားများခြင်း (excessive errors)၊ ပုံမှန် အလုပ်မလုပ်ခြင်း(malfunction) နှင့် ပျက်စီးခြင်း(permanent damage) စသည်တို့ ဖြစ်နိုင်သည်။

Sensor များ၏ တိုင်းနိုင်သည့် range ကို ထုတ်လုပ်သူ(manufacturer)များက ကက်တလောက် (catalogue)တွင် ဖော်ပြထားသည်။ တိုင်းလိုသည့် တန်ဖိုးသည် range ၏ အပြင်ဘက်တွင် ကျရောက် မနေစေရန် သတိပြုသင့်သည်။

Budget/Cost

Sensor များ ရွေးချယ်ရာတွင် ဈေးနှုန်းနှင့် ကုန်ကျစရိတ်သည် အဓိကကြသည့် အချက်ဖြစ်သည်။ ခွင့်ပြုထားသည့် ဘတ်ဂျက်(allocated budget)အတွင်း၌သာ လုပ်ကိုင်ကြရသောကြောင့် specification များ အားလုံး ကိုက်ညီနေခဲ့ သော်လည်း ဈေးနှုန်းနှင့် ကုန်ကျစရိတ် အလွန်များပါက ခွင့်ပြုလိမ့်မည် မဟုတ်ပေ။

Hysteresis

Device များ၏ accuracy သည် previous value နှင့် direction of variation အပေါ်တွင် မူတည်သည်။ Hysteresis သည် အမှန်တကယ်ရှိသည့် တန်ဖိုးသည်(true value) မှ ကွဲလွဲမှု(inaccuracy) ကို ဖော်ပြသည်။ Previous measurement နှင့် လည်း သက်ဆိုင်သည်။

Linearity

Linearity ဆိုသည်မှာ curve တစ်ခုသည် မျဉ်းဖြောင့်(straight line)နှင့် မည်မျ နီးစပ်သည်ကို ဖော်ပြသည်။ Sensor ၏ curve တစ်ခုသည် မျဉ်းဖြောင့်(straight line)နှင့် တူလေ linearity ပိုကောင်းလေ ဖြစ်သည်။ Instrument မှ တိုင်းတာရသည့် တန်ဖိုးကို response curve ဖြင့် ဖော်ပြနိုင်သည်။ Response curve သည် မျဉ်းဖြောင့်(straight line)ကဲ့သို့ မဟုတ်လျင် သို့မဟုတ် linearity မကောင်းလျင် continuous control application များတွင် ပြဿနာများစွာ ကြုံတွေ့ရ နိုင်သည်။ ထိုပြဿနာများကို ဖြေရှင်းရန်အတွက် signal ကို မျဉ်းဖြောင့်(straight line)အတိုင်း ဆက်စပ်မှု ဖြစ်အောင် ပြုလုပ်နိုင်သည်။ ထိုသို့ပြုလုပ်ခြင်းကို linearise လုပ်သည်ဟု ခေါ်သည်။

Repeatability

Repeatability ဆိုသည်မှာ ဒုတိယအကြိမ် တိုင်းတာမှု(second measurement)သည် ပထမအကြိမ် တိုင်းတာမှု(second measurement)နှင့် မည်မျှနီးကပ်သည်ကို ဖော်ပြသည်။ တူညီသည့်(same) input နှင့် တူညီသည့်(same) operating condition အောက်တွင်သာ အကျုံးဝင်သည်။ Repeatability သည် device ၏ accuracy range အောက်တွင်သာ ရှိသည်။ Repeatability နှင့် hysteresis နှင့် ကွဲပြားပုံကို သတိပြုသင့်သည်။

Sensor များ repeatability ညံ့သောကြောင့် control system များ၏ စွမ်းဆောင်ရည် ညံ့ဖျင်းနိုင်သည်။ Sensor များ repeatability ညံ့သောကြောင့် controller များသည် လိုသည်ထက်ပို၍ control လုပ်ခြင်း(overcontrol) ဖြစ်နိုင်သည်။ ထိုပြဿနာကို controller များတွင် deadband ထား၍ ဖြေရှင်းနိုင်သည်။

ပုံ ၃-၆ Repeatability

ပုံ ၃-၈ Accuracy and Precision (Hegberg, 2001–2002)

ပုံ(၃-၂)တွင် precise and inaccurate ၊ imprecise and relatively accurate တို့ကို နှိုင်းယှဉ် ဖော်ပြ ထားသည်။

Reliability

Realibility ဆိုသည်မှာ သတ်မှတ်ထားသော အတိုင်းအတာ တစ်ခုအတွင်း device တစ်ခုသည် ယုံကြည်စိတ်ချစွာ ပျက်စီးချို့ယွင်းခြင်း မရှိဘဲ ပုံမှန်အတိုင်း အလုပ်လုပ်နေမည် ဖြစ်နိုင်ခြေ(mathematical

probability) ဖြစ်သည်။

Response

Device တစ်ခု၏ output ကို function of time ဖြင့် ဖော်ပြသည့်အခါ အခြေအနေအသစ်ကို တုန့်ပြန်(respon)ရန် ကြာချိန်သည် အလွန်အရေးကြီးသည့် အချက် ဖြစ်သည်။ ထို device သုံးရန် သင့်၊မသင့် ကိုလည်း စဉ်းစားရန် လိုသည်။ လွန်နေးသည့် တုံ့ပြန်မှုရှိသည့် (slow responding) device များ ကို continuous control application တွင် မသုံးသင့်ပါ။

ပုံ ၃-၉ Typical time response for a system with a step input.

ASHRAE Terminology of Heating, Ventilating, Air Conditioning, and Refrigeration (1991)မှ နည်းပညာဝေါဟာရများကို ဖော်ပြထားသည်။ တိုင်းတာမူ(measurement)တစ်ခုလုံး၏ accuracy သည် အောက်ပါအချက်များပေါ်တွင် မူတည်သည်။

- (co) **Accuracy of the sensing element:** the claimed accuracy of the element may not be available over the whole operating range or may be quoted under ideal conditions.
- (a) **Sensitivity:** this is the smallest change in themeasured variable that can be detected by the system.
- (n) **Interacting variables:** the condition of the sensormay be affected by other environmental variables, e.g. an air temperature sensor will be affected by thermal radiation or an RH sensor by local variations in air temperature.
- (ω) **Stability:** sensors may drift with time and require checking. Stability is likely to be affected by operating conditions.
- (c) **Hysteresis:** the sensor reading may be affected by its past history and speed and direction of change of the measured variable.
- (o) Mounting: the mounting and location of the sensor will affect the reading.
- (∞) **Signal conditioning:** associated transducers will introduce their own limitations to the accuracy achievable. Some systems 'filter' readings first and only transmit when the measured variable has changed by a specified 'filter factor'. This is used to minimise network traffic.
- (Q) A/D conversion: the discrimination of any analogue to digital conversion will set a limit to the achievable accuracy. Eight-bit conversion divides the range into 256 steps, 12-bit into 4096 steps. In the latter case, a measurement range of -50 to 150 °C would have a step size of 0.05 K.

p.p Sensor Performance Characteristic

Sensor များ၏ static characteristic နှင့် dynamic characteristic များကို ဖော်ပြထားသည်။ တဖြည်းဖြည်းခြင်းသာ ပြောင်းလဲသည့် characteristic များကို static characteristic ဟု ခေါ် သည်။

Static Characteristics		Dynamic Characteristics
Accuracy	Scale range	Speed of response
Drift	Scale span	Measuring lag
Dead Zone	Noise	Fidelity
Static Error	Dead Time	Dynamic error
Sensitivity	Hysteresis.	
Reproducibility	Linearity	
Static correction		

Actuator Expected Performance Characteristic

Sensor Type	Expected Response Time	Performance Assurance
Air Flow Damper	30 second	Sensor Feedback
Evacuation	60 second	Supervised
Admittance	1 second	Supervised
Lighting	100 millisecond	Optical Sensing
Smoke Control Damper	10 second	Supervised
Smoke Abatement	60 second	Supervised

Speed of response

Sensor များ၏ တုန့်ပြန်မှု(response) လျင်မြန်မှသာ တည်ငြိမ်(stable)ပြီး တိကျသည့်(accurate) control လုပ်ငန်းများကို ဆောင်ရွက်နိုင်လိမ့်မည် ဖြစ်သည်။ Speed of response ကို time constant ဖြင့် ဖော်ပြလေ့ရှိသည်။ Time constant ဆိုသည်မှာ ပြောင်းလဲမှု၏ ၆၃%ကို output singal အဖြစ် ထုတ်ပေး နိုင်ရိုန်ကို ဆိုလိုသည်။ တစ်နည်းအားဖြင့် ပြောင်းလဲမှု၏ ၆၃% ကိုသိရန်ကြာရိန် ဖြစ်သည်။ time constant သည် တတ်ဆင်ထားပုံ၊ တိုင်းသည့် medium တို့အပေါ်တွင် မူတည်သည်။

Controlled variable ၏ ပြောင်းလဲမှုကို sensor က သိရန်ကြာလေ time constant များလေ ဖြစ်ပြီး control system ၏ တုန့်ပြန်မှု(respond)နေးလေ ဖြစ်သည်။ Time constant နည်းသည့်အခါ measured variable ၏ short term fluctuation များကြောင့် မလိုလားအပ်သည့် control action များဖြစ်ပေါ် လာနိုင်သည်။

Sensor ၏ time constant သည် control system ၏ time lags တွင် ပါဝင်သည်။

p.c Selection Requirements

တပ်ဆင်သည့်နေရာ ရွေးချယ်ခြင်း နှင့် အသုံးပြုမည့် sensor အမျိုးအစား ရွေးချယ်ခြင်းတို့သည် control system တိုင်းအတွက် အရေးကြီးသည်။

Control system ချို့ယွင်းခြင်း၊ ပုံမှန် အလုပ်မလုပ်ခြင်း ၏ အဓိက အကြောင်းအရင်းသည် sensor မှ ဖြစ်ပေါ်သော ပြဿနာများကြောင့်ဖြစ်သည်။ အရည်အသွေး ညံ့ဖျင်းသော sensor များကြောင့် drift ဖြစ်ပေါ်ခြင်း သို့မဟုတ် သက်တမ်းမတိုင်မီ ပျက်စီးခြင်း(early failure)၊ ပြုပြင်ထိန်းသိမ်းရန် ကုန်ကျစရိတ်များခြင်း နှင့် control လုပ်နိုင်စွမ်း ညံ့ဖျင်းခြင်းတို့ ဖြစ်ပေါ်နိုင်သည်။ အဆောက်အဦးရှိ sensor များတွင် ဖြစ်ပေါ်လေ့ရှိသည့် ပြဿနာများမှာ မတိကျခြင်း(inaccuracy)နှင့် ပျက်စီးချို့ယွင်းခြင်း(failure)တို့ ဖြစ်သည်။ ထိုပြဿနာ နှစ်မျိုးမှာ sensor များကို မှားယွင်းစွာ တပ်ဆင်ထားခြင်း (incorrect installation)ကြောင့် ဖြစ်သည်။

Table 3.2 Sensor requirements		
Sensor requirement	Checklist	
Туре	Status, analogue, intelligent	
Sensed medium	Air, water, gas, oil	
Sensed quantity	Temperature, pressure, velocity, humidity	
Location	Space, duct, pipe	
Housing	Accessibility, effect on accuracy and speed	
Accuracy	Accuracy, resolution, hysteresis, repeatability	
Operating range	The range over which the sensor performs accurately	
Overload range	The range to which the sensor may be subjected without damage	
Response time	Affected by sensor, housing and medium	
Protection	Is protection required from a damaging environment?	
Maintenance	Calibration requirements, ease of servicing and replacement	
Interchangeability	Can sensor be replaced by another from the same or different	
	manufacturer?	
Cost	Initial cost and total ownership cost over life cycle	

Sensor selection criteria:

Sensor များကို ရွေးချပ	်ရာတွင် အောက်ပါ အချက်များကို အလေးပေး စဉ်းစားသင့်သည်။	
Range:	Sensor ၏ accuracy သည် range အပေါ်တွင် မူတည်သည်။	
Sensitivity:	တိုင်းတာ၍ ရနိုင်သည့် အသေးငယ်ဆုံးသော ပြောင်းလဲမှု(measure of the smallest change) ဖြစ်သည်။	
Linearity:	Linearity between the change in input variable and the change in output	
	valiable. Signal conditioning is required for nonlinear sensors	
Response time:	The time taken for the sensor output to change for a given change in the sensor input	
Accuracy:	Sensor က တိုင်းပေးသည့် တန်ဖိုး(sensor output value) နှင့် အမှန်တကယ်ရှိသည့် တန်ဖိုး(true value)တို့၏ ကွာခြားချက် အမှား(error)သည် accuracy ဖြစ်သည်။	
Repeatability:	Sensor ၏ consistency	
Interchangeability:	Re-calibrating ပြန်လုပ်ရန် မလိုပဲ တခြား အမျိုးတူ sensor တစ်ခုနှင့် ပြောင်း၍ လဲလှယ်တပ်ဆင်နိုင်သည့် အရည်အသွေး။	
Ease of calibration:	The ease of establishing and maintaining the calibration of a sensor	
Stability:	Sensor ၏ ရှိသင့်သည် စွမ်းဆောင်ရည်ကို တာရှည်အောင် ထိန်းသိမ်းထားနိင်သည့် အရည်အသွေး။	

Cost:

Consideration of the appropriate cost for the value of information gained from the sensor

ထုတ်လုပ်သူ(manufacturer)မှ ပေးသည် pressure transducer တစ်ခု၏ specifications ကို ဥပမာ အဖြစ် ဖော်ပြထားသည်။

Operation	
Input range	0–1000 cm H ₂ O
Excitation	15 V DC
Output range	0–5 V
Performance	
Linearity error	0.5% full-scale operating range
Hysteresis error	Less than 0.15% full-scale operating range
Sensitivity error	0.25% of reading
Thermal sensitivity error	0.02%/°C of reading
Thermal zero drift	0.02%/°C full-scale operating range
Temperature range	0–50 °C

၃.၅ Classification of Error

 $\dot{\phi}$ ρ-00 Effects of random and systematic errors on calibration readings.

Error များကို သုံးမျိုး ခွဲခြားနိုင်သည်။

(c) Gross Error

Gross error သည် လူများကြောင့်ဖြစ်သော အမှားများ ဖြစ်သည်။ တိုင်းတာသည့် တန်ဖိုးများ မှားဖတ်ခြင်း၊ တွက်ချက်မှု မှားခြင်း စသည်တို့ ဖြစ်သည်။

- () Systematic Or Cumulative Error
 - (က) Instrumental error

Instrumental error သည် instrument ကြောင့် ဖြစ်ပေါ်သော အမှားများ ဖြစ်သည်။

(ຈ) Enviromental error

Measuring device ရှိရာနေရာသည် သတ်မှတ်ထားသော အခြေအနေ(temperature ၊ pressure ၊ humidity ၊ dust or of external electrostatic or magnetic field) မရှိသောကြောင့် ဖြစ်ပေါ် လာသည့် အမှားများဖြစ်သည်။ (ဂ) Observational Error

(p) Random Or Residual Or Accidental Error

Residual error ဟုလည်း ခေါ် ဆိုသည်။ အကြောင်းများစွာကြောင့် ဖြစ်ပေါ်နိုင်သော အမှားများဖြစ်သည်။ တိုင်းတာမှု(measurement)တစ်ခုလုံး၏ accuracy သည် အောက်ပါ အချက်များပေါ်တွင် မူတည်သည်။ အောက်တွင် instrument error (၅)မျိုးကို ပုံနှင့်တကွ ဖော်ပြထားသည်။

ပုံ ၃-၁၂ (င) Repeatability error

p. C Temperature Sensors

Air-conditioning application များတွင် အပူချိန်(temperature)သည် အဓိက ကျသော primary controlled variable ဖြစ်သည်။ Comfort HVAC application များတွင် အပူချိန်(temperature)သည် သက်သောင့်သက်သာ(human comfort)ဖြစ်မှု ၏ အခြေခံအကြောင်း ဖြစ်သည်။ Humidity ၊ air velocity နှင့် radiant temperature စသည်တို့သည် သက်သောင့်သက်သာ(human comfort)ဖြစ်မှု အပေါ် အကျိုး သက်ရောက်နိုင်သော်လည်း အပူချိန်(temperature)လောက် အဓိက မကျပေ။ Temperature sensor အမျိုးမျိုး ရှိသည်။

 $\dot{\phi}$ ρ-ορ Calibration and interpolation for a liquid-in-glass thermometer.

စက်မှုလုပ်ငန်းများ(industrial) တွင် အသုံးပြုလေ့ရှိသည့် temperature sensor နှစ်မျိုးမှာ

Contact Type	Non contact Type
Thermocouples	Infrared
Resistance Temperature Detectors (RTD's)	Acoustic
Thermistors	

Temperature sensor များ၏ အသုံးပြုပုံ(application) ကို လိုက်၍ specification ကွာခြားသည်။ 15°C မှ 25°C အတွင်း၌ accuracy 0.6K ေးနိုင်သည့် temperature sensor ကို zone air temperature တိုင်းယူရန် အတွက် အသုံးပြုနိုင်သည်။ Chilled water temperature ကို control လုပ်ရန် အသုံးပြုမည့် temperature sensor သည် accuracy 0.25 K ရှိရန် လိုအပ်သည်။

p.G.o Principles of Temperature Measurement

Process material မှ တိုင်းတာသည့် ကိရိယာ(measuring device)ဆီသို့ အပူစွမ်းအင်(heat energy) ကူးပြောင်းမှုပေါ်တွင် အခြေခံ၍ အပူချိန်တိုင်းတာမှု(temperature measurement)များကို ပြုလုပ်ကြသည်။ ထို့ကြောင့် တိုင်းတာသည့် ကိရိယာ(measuring device)များသည့် temperature dependent ဖြစ်ရန်လိုသည်။

ယနေ့ခေတ် analog electronic နှင့် digital control system များတွင် အပူချိန်(heat)ပြောင်းလဲခြင်း ကြောင့် ဖြစ်ပေါ် လာသည့် လျပ်စစ်ခုခံအား(resistance) ပြောင်းလဲမှုကို အခြေခံထားသည့် device များကို ပို၍ အသုံးပြုလာကြသည်။

အသုံးများသည့် device များမှာ

- (c) Thermistors
- Resistance temperature detectors (RTDs) နှင့် (1)
- Integrated circuit (IC) temperature sensors တို့ဖြစ်သည်။ (ç)

Sensor အတွင်းသို့ လျပ်စစ်ဓာတ်(current) ဖြတ်သွားသည့်အခါ လျပ်စစ်ခုခံအား(resistance) ဖြစ်ပေါ် သည်။ ထိုအခါ ထွက်ပေါ် လာသည့် အပူ(heat)ကြောင့် တန်ဖိုးအနည်းငယ် ပြောင်းလဲနိုင်သည်။ selfheating ဖြစ်သည်ဟု ပြောလေ့ရှိသည်။

HVAC Control and Building Automation Systems

Bimetal

ပထမဦးဆုံးသော temperature sensor သည် bimetallic sensor ဖြစ်သည်။ အတိုခေါက်အားဖြင့် bimetal ဟု ခေါ်လေ့ရှိသည်။ သတ္တုပြားငယ်(metal strip)နှစ်ခုကို တစ်သားတည်း ဖြစ်နေအောင် ပြုလုပ် ထားသည်။ ဂဟေဆော် (welding) ထားသည်။

ကျယ်ပြန့်နှုန်း မတူညီသည့်(different coefficient of expansion) သတ္တုပြားငယ်(metal strip) နှစ်ခုကို ရွေးချယ် အသုံးပြုထားသောကြောင့် အပူချိန် မြင့်မားလာသည့်အခါ တစ်ဖက်ဖက်သို့ ကွေးသွား သည်။ ထိုသို့ကွေးသွားခြင်းကို အခြေခံ၍ control system များတွင် modulating နည်း သို့မဟုတ် two-position နည်းဖြင့် အသုံးပြုကြသည်။

Two-position electric control တွင် spiral bimetal များကို အသုံးပြုကြသည်။ Mercury ထည့်ထားသည့် small glass switch ကို spiral အလယ်တွင် တပ်ဆင်ထားပြီး spiral အပြင်ဘက်တွင် bimetal ကို တပ်ဆင်ထားသည်။ အပူချိန် ပြောင်းလဲခြင်းကြောင့် spiral သည် တင်းကြပ်ခြင်း(wind) သို့မဟုတ် ပြေလျော့ခြင်း(unwind) ဖြစ်ပေါ် ကာ mercury switch သည် လျှပ်စစ်ပတ်လမ်းပြည့်စေခြင်း(make the circuit) သို့မဟုတ် ပျက်တောက်စေခြင်း(break the circuit)ကို ဖြစ်စေသည်။

 $\dot{\phi}$ ρ-ος Expansion thermometry bimetallic temperature sensor

အပူချိန်၏ တန်ဖိုးကို ဒိုင်ခွက်ဖြင့် ဖော်ပြရန် အတွက် small glass switch ကို ညွှန်ပြတံ(indicating pointer)ဖြင့် ချိတ်ဆက် ထားနိုင်သည်။ အခန်းတွင် တပ်ဆင်ထားသည့် thermostat များကို ဥပမာအဖြစ် တွေ့မြင်နိုင်သည်။ သို့သော် mercury သည် အဆိပ်သင့်စေသောကြောင့် သတိပြုသင့်သည်။

ວ.၆.၂ Thermocouple

RTDs ကို အသုံးပြုရန် မသင့်လျော်သည့် အခါများတွင် Thermocouple များကို အသုံးပြုကြသည်။ Thermocouple များသည် hostile သို့မဟုတ် remote environment များတွင် အသုံးပြုရန် သင့်လျော်သည်။ Thermocouple များသည် "**Seebeck effect**" ကို အသုံးပြု၍ အပူချိန်(temperature)ကို တိုင်းတာခြင်း ဖြစ်သည်။

Thermocouple များသည် အမျိုးအစား မတူညီသည့် သတ္တု(dissimilar metal)နှစ်မျိုးကို junction အဖြစ် ပေါင်းစပ်ထားသောကြောင့် အပူချိန်ပြောင်းလဲလျှင် electromagnetic force (voltage)လည်း ပြောင်းလဲသည်။ Iron wire နှင့် constantan wire တို့ကို junction အဖြစ် ပေါင်းစပ်ထားသည့်အခါ လေထု အပူချိန်(ambient temperature)ထက် 100°F ပိုမြင့်သည့်အခါ 3 milli-volts ထုတ်ပေးသည်။

အသုံးများသည့် thermocouple material များမှာ platinum-rhodium (Type S or R) ၊ chromelalumel (Type K)၊ copper-constantan (Type T) နှင့် iron-constantan (Type J) တို့ဖြစ်ကြသည်။ Thermocouple သုံးထားသည့် handheld instrument များတွင် ±0.5°F မှ ±5°F တိကျမှု(accuracy) ရရှိနိုင်သည်။

ບໍ່ ၃-ວດ Thermocouples E and K characteristics

Thermocouple များသည် ဈေးနှုန်းချိုသာသည်။ အရွယ်အစားသေးငယ်ခြင်း နှင့် steady-state သို့ လျင်မြန်စွာ ရောက်နိုင်ခြင်း တို့ကြောင့် hand-held temperature sensor များတွင် အများဆုံး အသုံးပြုကြသည်။ HVAC application များတွင် အပူချိန် အလွန်မြင့်မားသည့် boiler နှင့် flue တို့တွင် အသုံးပြု ကြသည်။ ယေဘုယျအားဖြင့် accuracy ကောင်းပြီး၊ ရိုးရှင်း လွယ်ကူသောကြောင့် အသုံးများသည်။ Table 4-1 တွင် thermocouple ၏ အားသာချက်(advantage)များ နှင့် အားနည်းချက်(disadvantage)များကို ဖော်ပြထားသည်။

ပုံ ၃-၁၉ Practical thermocouple circuit

$$\Delta V_{AB} = \alpha \left(T_1 - T_2 \right)$$

 ΔV_{AB} သည် မျိုး မတူသည့် သတ္တုနှစ်မျိုး၏ အပူချိန်ကွာခြားချက် ΔT ကြောင့်ဖြစ်ပေါ် လာသည့် ဝို့အား(volt) ကွာခြားချက် ဖြစ်သည်။ lpha သည် ကိန်းသေတန်းဖိုး တစ်ခုဖြစ်သည်။

Transmitter သည် အပူချိန်ပြောင်းလဲမှုကြောင့် ဖြစ်ပေါ်သော လျှပ်စစ်ခုခံအား(resistance) ပြောင်းလဲမှုကို linear signal အဖြစ်သို့ ပြောင်းလဲပေးသည်။ Digital control system များတွင် software များကို အသုံးပြု၍ look-up table ကိုကြည့်၍ လျှပ်စစ်ခုခံအား(resistance)ကို တိုင်းယူပြီး အပူချိန်ပြောင်းလဲမှု တန်ဖိုးကို ဖော်ပြနိုင်သည်။ သို့မဟုတ် thermistor manufacturer များ သို့မဟုတ် lab များက ပေးသည့် exponents နှင့် coefficients များကို အသုံးပြု၍ exponential equation များ ဖြေရှင်းခြင်း(solving)ဖြင့်လည်း အပူချိန်တန်ဖိုးကို ရရှိနိုင်သည်။

အဓိက အားသာချက်(advantages)နှင့် အားနည်းချက်များ(disadvantages)ကို Table 4-2 တွင် ဖော်ပြထားသည်။

Table 4-2 Thermocouple – Advantages and Disadvantages		
Advantages	Disadvantages	
Self-powered	Non-linear	
Simple	Reference required for accuracy	
Rugged	Least stable	
Fast response	Least sensitive	
Wide variety	Very weak output, millivolts	
Wide temperature range	Limited accuracy for small variations in temperature	
Inexpensive for lower accuracy	Sensitive to electrical noise	
Wide range of operation	Complicated conversion from emf to temperature	
Robust		
Small size		
Accurate for large temperature changes		

 \circ p- ρ Thermocouples in parallel for average temperature measurement

 $\dot{\phi}$ ρ- Jo Two thermocouples used to measure temperature difference

ວ. ຣ. ວ Thermistors

Thermistor များသည် semiconductor compound များ ဖြစ်ကြသည်။ အပူချိန်မြင့်တက်လျှင် Thermistor ၏ လျှပ်စစ်ခုခံအား(resistance) ကျဆင်းသွားသည်။ အပူချိန် အနည်းငယ် ပြောင်းရုံဖြင့် လျှပ်စစ် ခုခံအား(resistance) တန်ဖိုးများစွာ ပြောင်းလဲသည်။

ပုံ ၃-၂၂ Thermistor characteristic

ပုံ(၃-၂၂)တွင် အပူချိန် 77°F တွင်ဖြစ်ပေါ်နေသည့် လျှပ်စစ်ခုခံအား(resistance) အချိုး(ratio)ကို Yaxis တွင် ဖော်ပြထားသည်။ Resistance-temperature curve ၏ characteristic သည် မျဉ်းဖြောင့်အတိုင်း (non-linear) ဖြစ်မနေပေ။

Thermistor များ၏ accuracy သည် ±0.5°F ခန့် ဖြစ်သည်။ ±0.2°F အထိ ကောင်းအောင်လည်း ပြုလုပ်နိုင်သည်။ Sensitivity အလွန်ကောင်းသည်။ တစ်နည်းအားဖြင့် အပူချိန်ပြောင်းလဲမှုကို လျှင်မြန်စွာ(fast) တိတိကျကျသိနိုင်(detailed response)သည်။

အချိန်ကြာလာသည်နှင့်အမျှ thermistor ဖတ်ယူသည့် အပူချိန်တန်ဖိုး ကွာဟမှု(drift) ရှိသည်။ အမှန်တကယ် ရှိသည့် တန်ဖိုး(true value)နှင့် thermistor ဖတ်ယူသည့် အပူချိန်တန်ဖိုး ကွာခြားလာမှုကို drift ဖြစ်သည်ဟု ပြောလေ့ရှိသည်။ ထို့ကြောင့် မကြာခက calibration လုပ်ပေးရန် လိုသည်။

(၅)နှစ်အတွင်း 0.05°F သာ အများဆုံး drift ဖြစ်သည့် thermistor များကို ဈေးနှုန်း ချိုသာစွာဖြင့် ဝယ်ယူ ရရှိနိုင်သည်။

HVAC Control and Building Automation Systems

Thermistor များသည် အပူရိန်ကို လိုက်၍ လျှပ်စစ်ခုခံအား ပြောင်းလဲသည့် thermal resistor များ ဖြစ်ကြသည်။ Thermistor များသည် negative temperature coefficient ရှိသည့် resistor များဖြစ်ကြသည်။ အပူရိန်မြင့်မားလေ thermistor ၏ လျှပ်စစ်ခုခံအား(resistance) ကျဆင်းသွားလေဖြစ်သည်။

Table 4-2 Thermistor – Advantages and Disadvantages		
အားသာချက်များ (Advantages) အားနည်းချက်များ (Disadvantages)		
High resistance change	Non-linear	
Fast response	Fragile	
Two-wire measurement	Current source required	

p.G.ç Resistance Temperature Detectors (RTDs)

Resistance Temperature Detectors (RTDs)သည် အသုံးများသည့် temperature sensor တစ်မျိုး ဖြစ်သည်။ တည်ငြိမ်ခြင်း(stable)၊ တိကျခြင်း(accuracy) နှင့် ဈေးနှုန်းချိုသာခြင်း တို့ကြောင့် RTD ကို analog electronic နှင့် digital control system နှစ်မျိုးစလုံးတွင် အသုံးများသည်။

RTD ကို သတ္တုဖြင့် ပြုလုပ်ထားသည်။ အပူချိန်သည် ထိုသတ္တုတွင် ဖြစ်ပေါ်သည့် လျပ်စစ်ခုခံအား (resistance)နှင့် မျဉ်းဖြောင့်အတိုင်း(linear) ပြောင်းလဲနေသည်။

ပုံ(၃-၂၅) အသုံးများသည့် သတ္တုအမျိုးအစားများမှာ platinum ၊ copper-nickel ၊ copper ၊ tungsten နှင့် nickel-iron alloys တို့ဖြစ်သည်။ RTD များတွင် နန်းဆွဲထားသည့် သတ္တုမျှင်ကို အသုံးပြု ထားသည်။ Recalibration ပြုလုပ်ရန် မလိုအပ်ပေ။

0°C တွင် standard platinum RTDs လျှပ်စစ်ခုခံအား(resistance)တန်ဖိုးသည် 100 ohms ဖြစ်သည်။ လျှပ်စစ်ခုခံအားနည်းသည့်(low resistance) RTDs များသည် ဝါယာကြိုးကြောင့် ဖြစ်ပေါ် လာသည့် လျှပ်စစ်ခုခံအား(resistance)ကိုလည်း ထည့်စဉ်းစားရန် လိုသည်။ ဝါယာကြိုးကြောင့် ဖြစ်ပေါ် လာသည့် လျှပ်စစ် ခုခံအား(resistance)ကို လျော့နည်းစေရန် three-wire သို့မဟုတ် four-wire circuit ကို အသုံးပြုနိုင်သည်။

ပုံ ၃-၁၅ Thermistor and RTD resistance change with temperature Platinum RTD များသည် 100 ohms တွင် ±1.0°F accuracy ရရှိနိုင်သည်။ သန့်စင်ထားသည့် (high purity) platinum sensor များ၏ accuracy သည် ±0.02°F ဖြစ်သည်။

Thin-film platinum RTD ၏ လျှပ်စစ်ခုခံအား(reference resistance) သည် 1,000 ohms ဖြစ်သည်။ စျေးနှုန်းချိုသာပြီး accuracy ကောင်းခြင်းကြောင့် ယနေ့အချိန်တွင် electronic နှင့် digital control system များတွင် RTDs ကို တစ်စထက်တစ်စ thermistor များထက် ပို၍ အသုံးပြုလာကြသည်။

Thin-film RTDs ၏ accuracy သည် calibration point အနီးတွင် ±0.5°F မှာ ±1.0°F ဖြစ်သည်။ Platinum သတ္တု၏ အားသာချက်တစ်ခုမှာ drift ဖြစ်ခြင်း အလွန်နည်းသည်။ အားသာချက်များ (advantages) နှင့် အားနည်းချက်များ(disadvantages) RTD များကို Table 4-3 တွင် ဖော်ပြထားသည်။

Table 4-3 RTD – Advantages and Disadvantages		
Advantages	Disadvantages	
Most stable	Expensive	
Most accurate	Current source required	
Most linear	Bulky in size and fragile	
Good sensitivity	Slow thermal response time due to bulk	
Uses standard copper wire	Self heating problems	
Copper RTD's minimise thermocouple effect	More susceptible to electrical noise	
Interchangeable	More expensive to test and diagnose	

Transmitter အတွင်း ရှိ electronic circuit သည် RTD မှာ ထွက်သည့် signal ကို DDC မှ လက်ခံနိုင်သည့် signal အဖြစ်သို့ရောက်အောင် amplifie လုပ်ခြင်း နှင့် conditions လုပ်ခြင်းတို့ ပြုလုပ် ပေးသည်။

RTD connection to a Wheatstone Bridge:

- Two-wire
- Three-wire
- Four-wire

Two-wire measurement

ဝါယာကြိုးနှစ်ရောင်း ကို အသုံးပြု၍ RTD ဖြင့် အပူချိန်တိုင်းတာခြင်းသည် အခြေခံအကျဆုံးနည်း ဖြစ်သည်။ ရိုးရှင်းလွယ်ကူပြီး ဈေးနှုန်းချိုသာသည်။ သို့သော် accuracy မကောင်းပေ။ ဝါယာကြိုးကြောင့် ဖြစ်ပေါ် လာသည့် resistance ကို ကြောင့် အပူချိန်သည် true value ထက်ပိုမြင့်နိုင်သည်။

Three-wire measurement:

Three-wire measurement RTD device များသည် bridge ၏ lead wires တွင် ဖြစ်ပေါ် နေသည့် resistance များကို လိုက်ညှိပေးသည်။ Two-wire device ကို အနည်းငယ် ပြုပြင်ထားခြင်းသာ ဖြစ်သည်။ Lead wire တစ်ချောင်းသည် bridge circuit ၏ အပေါ်ပိုင်းတစ်ဝက်(top half)ကို တိုင်း၍ ကျန် wire တစ်ချောင်းသည် အောက်ပိုင်း တစ်စ်ဝက် (bottom half)ကို တိုင်းပေးသည်။

ပုံ ၃-၂၈ 3-Wire RTD Configuration for a Digital System

Four-wire measurement - Switched:

three-wire measurement တွင် lead resistance နှစ်ခု မတူညီနိုင်သောကြောင့် အ One of the limitations with the three-wire measurement, is that if the lead resistance is not the same or suffer different effects, then the measurement will be erroneous. The Four-wire measurement takes both sensing leads into account and alternates the leads into the upper part of the bridge.

By alternating, the lead resistance is effectively measured in both sensing leads, but is then cancelled out by taking the average of the two readings. This level of complexity does make four-wire sensing more expensive.

Four-wire measurement - Constant Current:

Four-wire ဖြင့်တိုင်းခြင်းသည် lead resistance ကြောင့်ဖြစ်သော error ပြဿာနာကို constant current ဖြေရှင်းရန် အကောင်းဆုံးနည်း ဖြစ်သည်။ အဓိကအကြောင်းသည် wire ကြောင့်ဖြစ်သော voltage drop ဖြစ်သည်။ ဝါယာနှစ်ချောင်းသည် excitation power ကို သယ်ဆောင်ပြီး ဖြစ်ပေါ် လာသည့် voltage ကို ကျန်ဝါယာ နှစ်ချောင်းဖြင့် တိုင်းယူသည်။

In this circuit there are three leads coming from the RTD instead of two. L1 and L3 carry the measuring current while L2 acts only as a potential lead. No current flows through it while the bridge is in balance. Since L1 and L3 are in separate arms of the bridge, resistance is canceled. This circuit assumes high impedance at Eo and close matching of resistance between wires L2 and L3. TEMPCO matches RTD leads within 5%. As a rule of thumb, 3 wire circuits can handle wire runs up to 100 feet.

4-wire RTD circuit များသည် resistances မကိုက်ညီခြင်း(mismatch)ကို ပြေပျောက်စေနိုင်သည်။

A common version is the constant current circuit shown here. Is drives a precise measuring current through L1 and L4; L2 and L3 measure the voltage drop across the RTD element. Eo must have high impedance to prevent current flow in the potential leads. 4-wire circuits may be usable over a longer distance than 3-wire, but you should consider using a transmitter in electrically noisy environments.

၃.၆.၅ Integrated Circuit Temperature Sensors

Integrated Circuit (IC) sensor များကို current source device များ နှင့် voltage source device များ အဖြစ် နှစ်မျိုးလုံး ရရှိနိုင်သည်။ Semiconductor junction diode များ၏ current-voltage characteristics ကို အခြေခံ၍ တည်ဆောက်ထားသည်။ Current-voltage သည် အပူချိန်(temperature)နှင့် မျဉ်းဖြောင့် အတိုင်း ဆက်သွယ်ချက်(linear relationship) ရှိသည်။

IC sensors ၏ ဂုက်သတ္တိများမှာ (Properties)

- (က) ဈေးနှုန်းချိုသာခြင်း (relatively cheap)
- (ခ) အပူချိန် -50 °C မှ 150 °C အတွင်းသာ တိုင်းနိင်ခြင်း(limited temperature range)
- (ဂ) ကွဲလွယ်ခြင်း(relatively fragile) နှင့် ကြာရှည်သုံးလျင် stability ညံ့ဖျင်းခြင်း(poor stability over time)
- (ဃ) ပြင်ပမှ လျပ်စစ်ဓာတ်အား ပေးရန် လိုအပ်ခြင်း(require an external power supply)
- (င) BAS တွင် သုံးရန် မသင့်လျော်ခြင်း (not quite suitable for BAS application) တို့ဖြစ်သည်။

IC sensor output types:

(က) Voltage output

(a) Current output - minimum sensed temperature

(o) Current output - average sensed temperature

Linear Diodes

Table 4-4 Linear Diodes – Advantages and Disadvantages			
Advantages	Disadvantages		
Most linear	Use up to 330°F		
Inexpensive	ower supply required, Slo	w, Self-heating, Limited	
	configurations		

Semiconductor diode နှင့် transistor များဖြင့် တည်ဆောက်ထားသည့် Integrated circuit (IC) temperature sensor များကို solid-state temperature sensor သို့မဟုတ် linear diode ဟူ၍လည်း ခေါ်လေ့ ရှိသည်။

Solid-state sensor များ၏ ထူးခြားချက်(advantage)မှာ calibration လုပ်ရန် လုံးဝ မလိုအပ်ခြင်း ဖြစ်သည်။ Table 4-4 တွင် Solid-state sensor များ၏ အားသာချက်များ(advantages) နှင့် အားနည်းချက်များ (disadvantages)ကို ဖော်ပြထားသည်။

လုပ်ငန်းနှင့် သင့်လျော်သည့် sensor အမျိုးအစား ရွေးချယ်ခြင်းသည် စီးပွားရေအရ တွက်ခြေကိုက်မှု (economics)၊ တိကျမှု(accuracy) နှင့် အချိန်ကြာသည့်တိုင် စိတ်ချရမှု(long-term reliability) တို့ဖြစ်သည်။

Se	Sensor characteristics များကို Table 4-5 တွင် အနှစ်ချုပ် ဖော်ပြထားသည်။					
Table 4-5 Temperature Sensors Comparison						
vpe	Primary Use	Advantages	Disadvantages	Resp		

Туре	Primary Use	Advantages	Disadvantages	Response Time
	Portable units	Inexpensive	Vorylow	Slow to fast
Thormocouplo	and high	Self-powered	very low voltage	depending
mermocoupie	temperature use	for average		on wire
	< 5,000°F	accuracy	σαιραί	gauge
	High sensitivity	Very large	Non-linear	
Thermistor	General use	resistance	Fragile	Fast
	< 300°F	change	Self-heating	

RTD	General purpose < 1,400°F	Very accurate Interchangeable Very stable	Relatively expensive	Long for coil Medium/ fast for foil Short for thin film
Integrated circuit	General purpose	Linear output	Not rugged	Medium /
	<400°F	Relatively	limited selection	Fast
		inexpensive		

: ອ.ອ. ຊ	Summary	of	temperature	sensors
-----------------	---------	----	-------------	---------

Sensor type	Primary use	Advantages	Disadvantages
RTD	General purpose water, air, steam	Very accurate, stable, interchangeable	Relatively expensive, not very sensitive
Thermistor	High sensitivity applications, chilled water metering	Very sensitive	Nonlinear, fragile, prone to self-heating
Thermocouple	High temperature applications, boilers, stack gas	Inexpensive, rugged, self-powered	Not very sensitive, low voltage output
IC sensor	General purpose, low temperature applications (<200 ^o C)	Very linear, high output, inexpensive	Not very rugged, limited physical configurations

ပုံ ၃-၃၃ Characteristics of Thermocouples, RTD's IC and Thermistor Temperature Sensors

$\mathfrak{p}.\mathfrak{G}.\mathfrak{q}$ Temperature Sensor's Measuring Errors

Table 8.8 တွင် temperature sensor များကို အသုံးပြုခြင်းကြောင့် ဖြစ်ပေါ်နိုင်သည့် အမှားများ(measuring errors) ကိုဖော်ပြထားသည်။ Random Errors

(,) Time and spatial variations

Systematic Errors

- (c) Insertion errors, heating or cooling of junctions
 - (က) Conduction errors
 - (ຈ) Radiation errors
 - (n) Recovery errors
- (J) Effects of plugs and extension wires
 - (က) Nonisothermal connections
 - (ຈ) Loading errors
- (2) Ignorance of materials or material changes during measurements
 - (က) Aging following calibration
 - (ຈ) Annealing effects
 - (n) Cold work hardening
- (ç) Ground loops
- (၅) Magnetic field effects
- (၆) Galvanic error
- (
) Reference junction inaccuracies

၃.၇ Moisture Sensors

ဓာတ်ငွေ့များ(gases) သို့မဟုတ် လေ ထဲတွင် ပါဝင်နေသည့် ရေငွေ့ပမာက (moisture content)ကို စိုထိုင်းဆ(humidity)ဟု ခေါ် သည်။ စိုထိုင်းဆ(humidity)ကို Relative humidity၊ Absolute humidity နှင့် Dew point တို့မှ တစ်ဆင့် ဖော်ပြနိုင်သည်။

စိုထိုင်းဆ(Humidity)ကို တိုင်းတာနိုင်သည့် နည်းပညာများ(technologies) နှင့် နည်းလမ်းများစွာ ရှိသည်။ အောက်တွင် အသုံးများသည့် တိုင်းတာနည်းများကို ဖော်ပြထားသည်။

Relative Humidity	Absolute Humidity	Dew Point Measurement
-Mechanical	-Gravimetry	- Chilled mirror
-Wet and dry bulb	-Electrolysis	- Lithium chloride
-Surface resistivity devices	- Infrared	- Wet bulb thermometer
-Crystal frequency change	- Conductivity	
	- Capacitance	
	- Colour change	
	- Karl Fischer titration	
	- RF power absorption	
	- Neutron reflection	

- Heat of absorption or desorption	
- Nuclear magnetic resonance	

ວ.ດ.ວ Humidity Sensors

Air conditioning လုပ်ငန်းခွင်တွင် စိုထိုင်းဆ တိုင်းတာခြင်း(humidity measurement)သည် အလွန် အရေးကြီးသည်။ လက်တွေ့တွင် drift ဖြစ်ခြင်း နှင့် contamination ဖြစ်ခြင်း စသည့် ပြဿနာများ ကြုံတွေ့ နိုင်သည်။

လေထုထဲရှိ ရေငွေ့ပါဝင်မှု(moisture content)ကြောင့် ဆံပင်နှင့် နိုင်လွန်(nylon) film တို့သည် ဆန့်ထွက်(expansion) လာသည်။ စိတ်ချရသည့် နည်းဖြစ်ပြီး contamination ဖြစ်ခြင်းကို ခံနိုင်ရည်ရှိသည်။ သို့သော် accuracy ညံ့သည်။

HVAC application များတွင် capacitative polymer film sensor နှင့် chilled mirror dewpoint sensor နှစ်မျိုးကို အသုံးများသည်။ Capacitative polymer film sensor သည် relative humidity ကို တိုက်ရိုက်တိုင်းနိုင်သောကြောင့် အသုံးများခြင်းဖြစ်သည်။ Sensing element ကို membrane သို့မဟုတ် ပိုက်ဖြင့်(netting filter) ဖုံးအုပ်ထားသည်။ Low humidities သို့မဟုတ် low temperature လုပ်ငန်းများတွင် dewpoint ကို အတိအကျ တိုင်းရန် လိုအပ်သည်။

ວ.ດ.ວ Relative Humidity Sensors

HVAC system များတွင် စိုထိုင်းဆ(humidity measurement)ကို တိုင်းရန် အတွက် တည်ငြိမ် (stable)၊ တိကျ(Accurate)ပြီး စျေးနှုန်းချိုသာသည့် ကိရိယာ အလွန်ရှားသည်။

ASHRAE Standard 62.1 Ventilation for Acceptable Indoor Air Quality ပြဌာန်းချက် အရ အခန်းအတွင်း စိုထိုင်းဆ(relative humidity levels)ကို 65% အောက်တွင် ထိန်းထားရန် လိုအပ်သည်။

Solid-state technology တိုးတက်လာမှုကြောင့် accuracy ပိုကောင်းလာ သော်လည်း စိတ်ချရသည့် accuracy ရရန် Relative Humidity sensor များကို ပုံမှန် ထိန်းသိမ်းမှုများ ပြုလုပ်ရန်နှင့် calibration လုပ်ရန် လိုအပ်သည်။ ထို့ကြောင့် ဒီဇိုင်းနာများသည် စျေးနှုန်း၊ တိကျမှု နှင့် ပြုပြင်ထိန်းသိမ်းခ စသည်တို့ကို ချိန်ဆ၍ HVAC control system များကို ဒီဇိုင်းလုပ်ရန် လိုသည်။

Humidity တန်ဖိုးရရှိရန် relative humidity ၊ dew-point temperature နှင့် wet-bulb temperature တို့မှတစ်ဆင့် တွက်ယူနိုင်သည်။ Relative humidity ကို အများဆုံးတိုင်းတာ လေ့ရှိသည်။ ထိုတန်ဖိုးသုံးမျိုးသည် တစ်ခုနှင့် တစ်ခု အပြန်အလှန် ဆက်စပ်နေကြသည်။ တစ်မျိုးမျိုးကို dry-bulb temperature အပူချိန်နှင့် တစ်ပြိုင်နက်တိုင်းယူနိုင်လျှင် ကျန်နှစ်မျိုး၏ တန်ဖိုးကို ရနိုင်သည်။ Barometric pressure ကို လိုက်၍ တန်ဖိုးများပြောင်းလဲနေသောကြောင့် ဖိအားပြောင်းမှုကို သတိပြုရန်လိုသည်။

Relative Humidity (RH):

Humidity sensor များသည် hygroscopic material ကို အသုံးပြု၍ ပြုလုပ်ထားသည်။ Hygroscopic material များ၏ ထုထည်(dimension)သည် စိုထိုင်းဆ(humidity)ကို လိုက်၍ ပြောင်းလဲနေသည်။ တစ်နည်းအားဖြင့် hygroscopic material များသည် လေထဲမှ ရေငွေကို စုပ်ယူ၍ ပွလာခြင်းဖြစ်သည်။ တိ<mark>ရိပ္တာ</mark>န်မွေးအမျှင်များ(animal hair)၊ သစ်သား(wood) နှင့် ဖိုင်ဘရစ် အမျိုးမျိုး(various fabrics) တို့သည် hygroscopic material များ ဖြစ်ကြသည်။ ထိုပစ္စည်းများကို portable sensor များတွင် အများဆုံး အသုံးပြု ကြသည်။ Accuracy သည် ±5% relative humidity ထက် ပိုများလေ့ရှိသည်။

p.၇.၂ Resistance-type humidity sensors

Resistance-type humidity sensor များတွင် hygroscopic material အသုံးပြု ထားသည်။

Hygroscopic materialsများ၏ လျှပ်စစ် ခုခံအား(electrical resistance)သည် စိုထိုင်းဆ(humidity)ကို လိုက်၍ ပြောင်းလဲ နေသည်။

ပုံ ၃-၃၄ Polymer resistance humidity sensor

၃.၇.၃ Capacitance-Type Humidity Sensors

ပုံ ၃-၃၅ 4-19 Thin-film Sensor Example (Hegberg, 2001)

Capacitance-type humidity sensor များကို ပုံစံအမျိုးမျိုးဖြင့် ရနိုင်သည်။ Hygroscopic material များ၏ electrical capacitance သည် စိုထိုင်းဆ (humidity)ကို လိုက်၍ ပြောင်းလဲနေသည်။ ပုံ(၃-၃၅)တွင် ပြထားသည့်အတိုင်း အလွန် ပါးလွှာသည့် aluminum oxide ၊ polymer နှင့် gold တို့ဖြင့် ပြုလုပ်ထားသည်။ Aluminum နှင့် gold တို့သည် capacitor ၏ plate များ အဖြစ် တည်ရှိသည်။

Capacitance သည် aluminum oxide layer အလွာမှ စုပ်ယူထားသော ရေငွေ (water vapor) ပမာကာပေါ်တွင် မူတည်၍ ပြောင်းလဲနေသည်။ အလွန်ပါးသည့် ရွှေအလွာ (very thin layer of gold)တွင် ရေငွေ (water vapor) စုပ်ယူခြင်း၊ ပြန်ထုတ်ခြင်း ဖြစ်ပေါ် သည်။ Jason-type hygrometer ဟုလည်း ခေါ် လေ့ရှိသည်။ 85% relative humidity အတွင်းတိုင်းလျှင် accuracy အလွန်ကောင်းသည်။ အလွန်များသည့် စိုထိုင်းဆရှိသည့်လေ (higher humidity air)ထဲတွင် အသုံးပြုလျှင် ပျက်စီးနိုင်သည်။ ±5% RH accuracy မှ ±1% rh အထိကောင်းသည့် RH sensor များ ရနိုင်သည်။ ထို ±1% rh accuracy တွင် hysteresis နှင့်

calibration uncertainty တို့ ပါဝင်သည်။ ပုံမှန်အားဖြင့် တစ်နှစ်လျင် 1% မှ 3%RH ခန့် drift ဖြစ်နိုင် သောကြောင့် သုံးလတစ်ကြိမ် ပုံမှန် calibration လုပ်ရန် လိုအပ်သည်။

p.q.ç Lithium Chloride Dew-point Sensors:

Dew-point sensor များသည် အလွန်တိကျသည့် humidity sensor များဖြစ်သည်။ ဈေးကြီးသည့် အမျိုးအစားများ ဖြစ်ကြသည်။ စိုထိုင်းဆ တိုင်းလိုသည့်လေနှင့် saturated salt solution (lithium chloride) ထိတွေပြီး တိုင်းယူရသည်။ Steady state သို့ရောက်သည့်အခါ solution ၏ အပူချိန်နှင့် လေ၏ dew-point အပူချိန်တို့ တူညီသွားသည်။ အလွန်တိကျသော်လည်း တုန့်ပြန်မှု အလွန်နှေး(slow to respond)သည်။ လေထဲတွင် စိုထိုင်းဆ အလွန်နည်းလျှင်(low humidity levels) မတိကျမှု(inaccurate) ဖြစ်နိုင်သည်။ Sensor accuracy သည် ±2.5°F ထက် ပိုကောင်းသည်။

ວ.ດ.၅ Chilled-Mirror Dew-point Sensors:

အလွန်တိကျသည့် dew-point sensor နောက်တစ်မျိုးမှာ chilled-mirror ဖြစ်သည်။ ပုံ (၃-၃၆)တွင် ပြထားသည့် အတိုင်း light source ၊ two photocells နှင့် အအေးခံထားသည့် မှန် (chilled mirror)တို့ ပါဝင်သည့် chamber အတွင်းသို့ တိုင်းလိုသည့် လေကို ဖြတ်သန်းစေသည်။ Photocell တစ်ခုသည် light source မှ အလင်းတန်းကို reference အဖြစ် တိုက်ရိုက် လက်ခံယူသည်။ အခြားတစ်ခုသည် photocell အအေးခံထားသည့်မှန်(chilled mirror)မှ တစ်ဆင့်ပြန်လာသည့် အလင်းတန်းကို လက်ခံယူသည်။ ထိုအလင်းတန်း နှစ်ခုကို နှိုင်းယှဉ်ခြင်းဖြင့် လေ၏ dew-point အပူချိန်ကို သိနိုင်သည်။

မှန်ပေါ်တွင် condensation ဖြစ်ပေါ်သည့်အခါ အလင်းတန်းများသည် ဘေးသို့ပြန့်ကား (scatter) ထွက်သွားသည်။ ထိုအခါ မှန်မှ အလင်းတန်းများသည် photocell ထံသို့ မရောက်ရှိတော့ပေ။ Light level လျော့နည်းသွားခြင်းသည် condensation ဖြစ်ခြင်းကို ဖော်ပြသည်။ မှန်၏ မျက်နှာပြင်အပူချိန်(surface temperature of the mirror) RTD temperature sensor ဖြင့် တိုင်းယူခြင်းဖြင့် condensation စတင် ဖြစ်ပေါ်သည့် အပူချိန်ကို ရရှိသည်။ ထိုအပူချိန်သည့် စီးဝင်လာသည့် လေ၏ dew-point အပူချိန်ပင် ဖြစ်သည်။

စျေးနှုန်းမြင့်ခြင်းကြောင့် chilled-mirror sensor များကို commercial building များတွင် relative humidity sensor များ အဖြစ် အသုံးပြုလေ့မရှိပေ။

အားသာချက်များ(advantages)

(၁) Dew-point ကို တိုက်ရိုက် တိုင်းတာခြင်း။

Temperature နှင့် RH တို့မှ တွက်ယူထားသည့်နည်း မဟုတ်ပေ။

(၂) Accuracy ±0.4°F အထိ ရနိုင်ခြင်း

(၃) တိုင်းယူနိုင်သည့် range (—20 and 80°F dry bulb) ကျယ်ပြန့်ခြင်း

Chilled-mirror sensor ဖြင့် လေ၏ dew-point အပူချိန်ကို တိုင်းယူသည့်အခါ မှန်မျက်နှာပြင်ပေါ်တွင် contamination ဖြစ်ပေါ်နိုင်သည်။ ထို့ကြောင့် တိုင်းယူမည့်လေကို သန့်စင်အောင် စစ်(filter)ထားရန် လိုအပ်သည်။ အလွန်တိကျသည့် accuracy လိုအပ်သည့်အခါ chilled-mirror sensor များသည် အကောင်းဆုံးနှင့် အသင့်လျော်ဆုံးဖြစ်သည်။

ပုံ ၃-၃၇ Examples of humidity sensors

ပုံ ၃-၃၆ Sling psychrometer

p.q. Psychrometers

Psychrometer သည် wet-bulb နှင့် dry-bulb အပူချိန်ကို တိုက်ရိုက်တိုင်းယူသည့်နည်းဖြင့် humidity ကို တိုင်းခြင်းဖြစ်သည်။ Wet-bulb နှင့် dry-bulb အပူချိန်တန်ဖိုးကို သိလျှင် psychrometric chart မှတစ်ဆင့် ကျန်ရှိနေသည့် လေ၏ဂုက်သတ္တိများ(properties of air) အားလုံးကို သိနိုင်သည်။ Commercial building များတွင် psychrometer များ တပ်ဆင် အသုံးပြုလေ့ မရှိသော်လည်း အခြားသော humidistat နှင့် relative humidity sensor များကို calibration လုပ်ရန်အတွက် အသုံးပြုကြသည်။

Sling psychrometer များကိုလည်း အသုံးပြုနိုင်သည်။ Sling psychrometer တွင် သာမိုမီတာ (thermometer) နှစ်ချောင်း ပါဝင်သည်။ သာမိုမီတာ(thermometer) တစ်ချောင်းကို ရေစွတ် ထားသည့်ဝါဂွမ်း သို့မဟုတ် အဝတ်စဖြင့် ပတ်ထားသည်။ တိုက်နေသည့်လေ ဖြစ်စေရန်အတွက် သာမိုမီတာ (thermometer) နှစ်ချောင်းကို အချိန်အနည်းငယ်ကြာ မွှေ့ရမ်းရသည်။ ထိုနောက် wet-bulb နှင့် dry-bulb အပူချိန်တန်ဖိုးကို လျင်မြန်စွာ ဖတ်ယူရသည်။ Wet-bulb နှင့် Dry-bulb အပူချိန်တန်ဖိုး နှစ်မျိုးမှ Psychrometric chart ကို အသုံးပြု၍ RH နှင့် moisture content ကို တွက်ယူနိုင်သည်။

မွှေ့ရမ်း(swing)သည့် အချိန်နည်းခြင်း နှင့် သာမိုမီတာ(thermometer)တွင် ရေလုံလောက်အောင် မစိုစွတ်ခြင်းတို့ကြောင့် တိကျမှု အားနည်းသည်။

Advantages of Psychrometers

- (က) Physical propertie များကို တိုက်ရိုက် တိုင်းတာသောကြောင့် recalibration လုပ်ရန် မလိုပေ။
- (ခ) Indoor environments များတွင် အသုံးပြုလျှင် accuracy သိပ်မဆိုးပေ။
- (ဂ) wet-bulb အပူချိန်တန်ဖိုး +5% accuracy ရနိုင်သည်။
- (ဃ) သယ်ဆောင်ရန် ပေါ့ပါးလွယ်ကူသည်။

Disadvantages

(က) Psychrometric chart ကို မဖြစ်မနေ အသုံးပြုရသည်။ Wet-bulb နှင့် Dry-bulb အပူချိန်များကို psychrometric chart ပေါ်တွင် နေရာချ(locate)ရသည်။ ထိုနောက် ကျန်သည့် တန်ဖိုးများကို

ကောင်းထက်ညွှန့်

ဖတ်ယူရခြင်းကြောင့် အမှားများစွာ ဖြစ်ပေါ်နိုင်သည်။

- (ခ) Duct အတွင်းရှိ လေကို တိုင်းရန်ခက်ခဲသည်။
- (ဂ) လေထဲ၌ စိုထိုင်းဆနည်းသည့်အခါ(low-relative-humidity) တိုင်းရန် ခက်ခဲသည်။
- (ဃ) သာမိုမီတာ(thermometer) များမှ တန်ဖိုးများကို ဖတ်ယူသည့်အခါတွင် error များ ဖြစ်ပေါ် နိုင်သည်။
- (င) Contamination ဖြစ်ခြင်းကြောင့် error များ ဖြစ်ပေါ်နိုင်သည်။

ပုံ ၃-၄၁ Elastic elements used as pressure sensors.

ວ.໑ Pressure Sensors

ဖိအား(pressure) ပမာဏာကို အမြဲတမ်း ဖိအားကွာခြားမှု(differential pressure)ဖြင့် တိုင်းလေ့ရှိသည်။ Fluid နစ်မျိုး တို့၏ ဖိအားကွာခြားမှု သို့မဟုတ် fluid တစ်မျိုး၏ ဖိအား နှင့် reference pressure တို့၏ ခြားနားချက်ကို တိုင်းယူခြင်း ဖြစ်သည်။

လေထုဇိအား(atmospheric pressure)ကို reference pressure အဖြစ်သတ်မှတ်ပြီး တိုင်းယူရသည့် ဖိအားကို gauge pressure ဟု သတ်မှတ် ပြောဆိုလေ့ရှိသည်။ Gauge pressure ဆိုသည်မှာ pipe တွင်းရှိ ရေ သို့မဟုတ် duct အတွင်းရှိ လေ(fluid)၏ ဖိအားနှင့် လေထုဖိအား(atmospheric pressure) တို့၏ ကွာခြားချက် တန်ဖိုး ဖြစ်သည်။ Fluid တစ်မျိုး၏ absolute pressure ဆိုသည်မှာ gauge pressure နှင့် လေထုဖိအား (atmospheric pressure) တို့ပေါင်း၍ ရသည့်တန်ဖိုး ဖြစ်သည်။ ပင်လယ်ရေမျက်နှာပြင်ရှိ လေထုဖိအား (atmospheric pressure)သည် 14.7 pounds per square inch ဖြစ်သည်။

ရေဇိအား(water pressure)ကို pounds per square inch(PSI) သို့မဟုတ် KPa ဖြင့် တိုင်းလေ့ ရှိသည်။ psig ကို gauge pressure ၊ psia ကို absolute pressure ၊ psi ကို differential pressure ယေဘုယျအားဖြင့် သတ်မှတ်လေ့ရှိသည်။

လေဖိအား(air pressures)ကို inches of water gauge သို့မဟုတ် water column ဖြင့် တိုင်းတာသည်။ One inch H2O သည် 0.036 psi နှင့် ညီမျှသည်။

സെന്റര്ണാ:(Atmospheric Pressure)

ပင်လယ် ရေမျက်နှာပြင်(sea level)ပေါ်သို့ သက်ရောက်နေသည့် ဖိအား (theoretical standard barometric pressure)ကို SI ယူနစ် နှင့် IP ယူနစ် တို့ဖြင့် ဖော်ပြထားသည်။

Torr	kPa	Inch of Hg	M Bar	Psia	Psig
760	101.4	29.92	1000	14.696	0.0

psig = psi ၏ နောက်တွင် g ဖြင့် ဖော်ပြလျှင် "Guage Pressure" ဖြစ်သည်။ (positive pressure) psia = psi ၏ နောက်တွင် a ဖြင့် ဖော်ပြလျှင် "Absolute Pressure" ဖြစ်သည်။ (positive pressure) psiv = psi ၏ နောက်တွင် v ဖြင့် ဖော်ပြလျှင် "Vacuum Pressure" ဖြစ်သည်။ (negative pressure) psi ဟုဖော်ပြလျှင် "Differential pressure" ဖြစ်သည်။ (positive or negative pressure)

$$P_{abs} = P_{atm} + P_g$$
$$P_{abs} = P_{atm} - P_{vad}$$

Differential pressure သည် fluid နှစ်မျိုး၏ ဖိအားကွားခြာချက် သို့မဟုတ် reference pressure နှင့် တိုင်းလိုသည့် pressure တို့၏ ဖိအားကွားခြာချက် ဖြစ်သည်။

Pressure sensor များတွင် diaphragm သို့မဟုတ် bellow စသည့်ဖြင့် အားကို တိုင်းတာနိုင်သည့် အရာ(force summing element) ပါဝင်သည်။ ဖိအားကြောင့် ဖြစ်ပေါ် လာသည့် အားကို စပရိမ်(spring) သို့မဟုတ် တခြားသော elastic structure တစ်မျိုးမျိုးဖြင့် တိုင်းယူခြင်း ဖြစ်သည်။ တစ်နည်းအားဖြင့် ဖိအားကြောင့် ဖြစ်ပေါ်သော displacement ကို electrical quantity အဖြစ် ပြောင်းလဲပြီး တိုင်းတာ ဖော်ပြခြင်း ဖြစ်သည်။

Pressure sensor ကို ရွေးချယ်သည့်အချက်များ(selection criteria)မှာ temperature sensor များကို ရွေးချယ်သည့် အချက်များနှင့် တူသည်။

အသုံးများသော pressure transducers အမျိုးအစား (၅)မျိုးမှာ

ပုံ ၃-၄၂ Capacitive pressure transducer

ỷ ၃-၄၄ Strain gauge pressure transducer

(c) Capacitive pressure transducers

Capacitor ကို plate နှစ်ခုဖြင့်တည်ဆောက်ထားသည်။ ဖိအားကြောင့် plate နှစ်ခု၏ အကွာအဝေး ပြောင်းလဲမှုကို တိုင်းယူသည်။ Capacitance သည် oscillator circuit ၏ အစိတ်အပိုင်းဖြစ်သည်။ capacitance ပြောင်းလဲမှုကြောင့် oscillator frequency ပြောင်းလဲသည်။ Oscillator frequency ပြောင်းလဲမှုကို သိခြင်းဖြင့် ဖိအားပြောင်းလဲမှုကို သိနိုင်သည်။

(J) Inductive pressure transducers

Inductive type pressure transducers တွင် coil နှစ်ခု ပါဝင်သည်။ primary coil ကို ac ဓာတ်အား ပေး၍ induced voltages ကြောင့်ဖြစ်ပေါ် လာသည့် အရွှေ(displacement)ကို တိုင်းထားခြင်းဖြင့် ဖိအားတန်ဖိုးကို သိနိုင်သည်။

(2) Strain gauge pressure transducers

The deformation of a piece of wire subjected to force due to pressure along its length causes a change in wire diameter and hence the wire resistance. Resistance changes are then measured by a suitable bridge circuit.

(ç) Piezoelectric transducers

These use materials whose electrical characteristics change when they are deformed under pressure, e.g. crystalline quartz exhibits a change in resistance when subjected to pressure (piezoresistive)

(၅) Potentiometric transducers

These consist of a 3-terminal resistor with adjustable centre connection in the form of a wiper. The wiper moves as a result of force due to pressure, and hence pressure measurement is related to the position of the wiper measured as a resistance.

ပုံ ၃-၄၃ Inductive pressure transducer

ပုံ ၃-၄၅ Piezoelectric pressure transducer

2.0.3 Summary of pressure sensors for DAS application	၃.၈.၁	Summary	of pressure	sensors for	r BAS	application
---	-------	---------	-------------	-------------	-------	-------------

· · ·	•	••	
Sensor type	Primary use	Advantage	Disadvantage
Capacitive	low-pressure air; duct	Cheap	Complex signal conditioning
	static or filter		
	differential pressure		
Inductive	Low pressure	Rugged	Expensive, temp
			compensation difficult
Strain gauge	High pressure, chilled	Linear output	Low output signal
	water, steam		
Piezoelectric	Fluctuating pressures,	Wide pressure	Difficult to calibrate
	sound, mech. vibration	range	
Potentiometric	General purpose	Cheap, high	Low accuracy, large size,
		output	physical wear reduces life

ပုံ ၃-၄၆ Potentiometric pressure transducers

ວ.໑.၂ Mechanical Pressure Gauges:

ပုံ(၃-၄၆)တွင် ဖော်ပြထားသည့် pressure gauge များတွင် Bourdon tube ကို sensing element အဖြစ် အသုံးပြုထားသည်။ Bourdon tube သည် ထိပ်တစ်ဖက်တွင် ပိတ်ထားသည့် spiral tube ဖြစ်သည်။ အခြားတစ်ဖက်တွင် တိုင်းလိုသည့် ဖိအား သက်ရောက်စေသည်။ လေထုဖိအားကို atmospheric pressure reference အဖြစ် သတ်မှတ်သည်။ တိုင်းလိုသည့် ဖိအားပမာကများလာလျင် Bourdon tube သည် ဆန့်ထွက် ဖြောင့်တန်းလာလိမ့်မည်။ မောင်းတံ(linkage) နှင့် ဂီယာ(gear)မှ တစ်ဆင့် ညွှန်ပြတံ(indicating pointer)ကို ရွှေ့လျားစေသည်။ Bourdon and spiral tube များကို water system များတွင်သာ အသုံးပြုကြသည်။

ວ.໑.ວ Diaphragm sensor

ပုံ(၃-၄၉)တွင် ပြထားသည့် diaphragm sensor သည် chamber နှစ်ခုပါဝင်ပြီး flexible wall သို့မဟုတ် diaphragm ဖြင့် ပိုင်းခြားထားသည်။ ပါးလွာသည့် စတီးပြား(thin steel sheet)ကို diaphragm အဖြစ် အသုံးပြုထားသောကြောင့် သေးငယ်သည့် ဖိအားပြောင်းလဲမှုများကို သိနိုင်သည်။ Fabric များကိုလည်း diaphragm အဖြစ် အသုံးပြုကြသည်။ ရေဖိအား တစ်လက်မ၏ အပုံတစ်ရာပုံလျှင် တစ်ပုံအထိ သေးငယ်သည့် ဖိအားကို တိုင်းနိုင်သည်။ ဖိအား(psi) ရာပေါင်းများစွာ များသည့် ဖိအားများကိုလည်း တိုင်းနိုင်သည်။ သို့သော် pressure gauge များ အားလုံးတွင် ကန့်သတ်ထားသည့် pressure range များ ရှိကြသည်။ Pressure range များလာလေ sensitivity လျော့နည်းလာလေဖြစ်သည်။ Diaphragm pressure gauge များကို water နှင့် air system များတွင် အသုံးပြုကြသည်။

p.o.ç Potentiometer

potentiometer သည် အရိုးရှင်းဆုံးသော device ဖြစ်သည်။ ပုံ xx2 ကွိုင်(coil)တစ်ခုနှင့် slider တစ်ခုဖြင့် တည်ဆောက်ထားသည်။ Slider သည် ကွိုင်(coil) တစ်လျောက်တွင် ရွှေ့လျားနိုင်သည်။ ကွိုင်(coil)ပေါ် ရှိ slider နေရာပြောင်းလဲမှုကို transmitter က သိရှိပြီး ဖိအားတန်ဖိုးအဖြစ် ပြောင်း၍ ဖော်ပြပေးသည်။ Potentiometric များသည် ဈေးသက်သာသော်လည်း accuracy နိမ့်သည်။

ວ.໑.၅ Electrical Pressure Guages:

Piezoelectric pressure sensor မှ လွဲ၍ ကျန် pressure sensor များ အားလုံးသည် ဖိအား တန်ဖိုးများကို အဆက်မပြတ် တိုင်းယူ(measure continuous)သည်။ Piezoelectric pressure sensor ဖိအား ပြောင်းလဲမှုကြောင့် ဖြစ်ပေါ် သည့် strain ပြောင်းလဲခြင်းကို တိုင်းတာ၍ output signal အဖြစ် ထုတ်ပေးသည်။

ဖိအားပြောင်းလဲသည့် အခါမှသာ တိုင်းတာသည်။ တစ်နည်းအားဖြင့် ပြောင်းလဲမှုဖြစ်ပေါ်မှသာ ဖိအားတန်ဖိုးအသစ်ကို update လုပ်သည်။

၃.໑. ၆ Capacitance pressure detector

Capacitive pressure measurement နည်းသည် diaphragm ရွှေ့လျားမှု ပြောင်းလဲခြင်းကြောင့် ဖြစ်ပေါ်လာသည့် capacitance ပြောင်းလဲမှုကို တိုင်းယူသည့်နည်းဖြစ်သည်။ Sensor အတွက်လိုအပ်သည့် စွမ်းအင်ကို high frequency oscillator မှယူသည်။ pressure changes ဖိအား ပြောင်းလဲမှုကြောင့် diaphragm ၏ နေရာပြောင်းလဲသည်။ ထိုပြောင်းလဲမှုကို bridge circuit မှ capacitance ဖြင့်တိုင်းယူသည်။

Capacitance sensor ကို ပုံ(၃-၅၂)တွင် ဖော်ပြထားသည်။ Capacitor ကို plate နှစ်ခုဖြင့် တည်ဆောက်ထားသည်။ ဖိအားကြောင့် plate နှစ်ခု၏ အကွာအဝေး ပြောင်းလဲမှုကို တိုင်းယူသည်။ Capacitance သည် oscillator circuit ၏ အစိတ်အပိုင်းဖြစ်သည်။ Capacitance ပြောင်းလဲမှုကြောင့် oscillator frequency ပြောင်းလဲသည်။ Oscillator frequency ပြောင်းလဲမှုကို သိခြင်းဖြင့် ဖိအားပြောင်းလဲမှုကို သိနိုင်သည်။

ပုံ(၃-၅၃)တွင် ဖော်ပြထားသည့် inductive sensor များသည် metal core တွင် ကွိုင်(coil) နှစ်ခု ပတ်ထားသည့် transformer နှင့် ဆင်တူသည်။ Metal core ကို ရွှေ့လျားနိုင်အောင် ပြုလုပ်ထားသည်။ Metal core ရွှေ့လျားခြင်းကြောင့် metal core တွင် ဖြစ်ပေါ် လာသည့် magnetic flux ကို transmitter မှ တိုင်းယူသည်။ ထိုမှတစ်ဆင့် ဖိအားတန်ဖိုး အဖြစ်သို့ ပြောင်းယူသည်။

အသုံးများသည့် capacitance pressure detector နှစ်မျိုးမှာ two-plate design နှင့် single capacitor design ဖြစ်သည်။ ဤနည်းဖြင့်တိုင်းလျင် တိကျ(accurate)ပြီး operating range အလွန် ကျယ်သည်။ Capacitive pressure measurement သည် ကန်အတွင်းရှိ အရည်၏ အမြင့်ကို တိုင်းရာတွင် အလွန်အသုံးများသည်။

၃.၉ Flow Sensors and Meters

Process flow များကို တိုင်းယူသည့် အဓိက နည်းသုံးမျိုးမှာ velocity ၊ volumetric flow နှင့် mass flow တို့ဖြစ်သည်။

Air system နှင့် hydronic system များတွင် flow sensor များကို အသုံးပြုရသည့် ရည်ရွယ်ချက်မှာ energy process control နှင့် energy monitoring ရန်အတွက် ဖြစ်သည်။ Sensor များတွင် တန်ဖိုးကို ဖော်ပြနိုင်သည့် ကိရိယာ(indication device) သို့မဟုတ် တန်ဖိုးများကို သိမ်းဆည်း မှတ်သားထားနိုင်သည့် ကိရိယာ(recording device) ပါဝင်နေလျင် ထို sensor ကို မီတာ (meter)ဟု ခေါ် သည်။

Factors affecting flowmeter performance

- (m) Process media (Liquid/Gas) (ဃ) Velocity
- (ລ) Density (Specific Gravity) (c) Viscosity Pressure
- (n) Temperature (o)

HVAC Control and Building Automation Systems

Volumetric Flowmeter အမျိုးအစားများမှာ

- (က) DP
- (ຈ) Turbine
- (n) Vortex / Swirl
- (ဃ) Magnetic

- (c) Target
- (o) Ultrasonic
- (∞) Displacement

HVAC နှင့် ACMV လုပ်ငန်းများတွင် flow control ကို အသုံးပြုထားသည့် နေရာများမှာ chilled water flow၊ condenser water flow ၊ hot water flow နှင့် air flow တို့ဖြစ်သည်။ HVAC applications များတွင် အများဆုံး အသုံးပြုသည့် flow sensor များကို အောက်ပါအတိုင်း လေးအုပ်စု ခွဲနိုင်သည်။

- (c) Differential pressure flow sensors
- (J) Displacement flow sensors
- (၃) Passive flow sensors နှင့်
- (၄) Mass flow sensors တို့ ဖြစ်သည်။

စီးဆင်းနေသည့် fluid သည် fully developed ဖြစ်မှသာ fitting နှင့် obstruction များကြောင့် ဖြစ်ပေါ်သော eddy နှင့် vortice များ ကင်းဝေးမှသာ flow sensor များအားလုံး၏ တိုင်းတာမှုများ တိကျ မှန်ကန် နိုင်သည်။

Flow sensor များ အားလုံးသည် လုံလောက်အောင် ဖြောင့်တန်းသည့် ပိုက်အရှည် သို့မဟုတ် duct အရှည် ရှိရန် လိုအပ်သည်။ တိုင်းတာမှုများ တိကျမှန်ကန်ရန် upstream တွင် duct/pipe diameter ၏ (၂)ဆ မှ (၁ဂ)ဆ နှင့် downstream တွင် duct/pipe diameter ၏ (၂)ဆ မှ (၃)ဆ လိုအပ်သည်။

ရှိသင့်သည့် ဖြောင့်တန်းသည့် ပိုက် သို့မဟုတ် duct အရှည် မရနိုင်ပါက straightening vane သို့မဟုတ် grid များကို အသုံးပြု၍ accuracy ပိုကောင်းအောင် ပြုလုပ်နိုင်သည်။ ရေ(water)နှင့် လေ(air)ကို တိုင်းသည့် flow meter များကို အသုံးများသည်။

Differential Pressure Flowmeters			
Advantages	Disadvanteages		
Use On Liquid, Gas, and Steam	Limited Rangeability		
Suitable for Extreme Temperatures and	Effected By Changes In Density, Pressure,		
Pressures	and Viscosity		
No Moving Parts	Maintenance Intensive		
Low Cost			

ວ.ອ.ວ Differential Pressure Flow Meters

Differential pressure မှတဆင့် စီးနှုန်း(flow)ကို တွက်ယူခြင်းသည် နှစ်ပေါင်းများစွာက အသုံးပြုခဲ့သည့်နည်း ဖြစ်သည်။ Bernoulli's equation ကို အခြေခံ၍ Differential pressure မှ စီးနှုန်း(flow) ကို တွက်ယူသည်။

$$V = C \sqrt{\frac{2 \Delta P}{\rho}}$$

Differential Pressure Flow Meters:

$$V = C \sqrt{\frac{2\Delta P}{\rho}}$$

(Equation 4-1)

where V is the velocity,

C is a constant that is a function of the physical design of the meter,

DP is the measured pressure drop, and

 $\boldsymbol{\rho}$ is the fluid density.

HVAC system များ ပုံမှန် မောင်းနင် လည်ပတ်နေသည့် အခြေအနေများတွင် လေနှင့် ရေတို့၏ သိပ်သည်ဆများ မပြောင်းလဲကြပေ။ ထို့ကြောင့် လေ နှင့် ရေ သိပ်သည်ဆတန်ဖိုး(density)ကို အစားသွင်း၍ တွက်နိုင်သည်။

ပုံတွင် 4-26 orifice plate meter ၏ ပုံကို ဖော်ပြထားသည်။ Orifice plate သည် အလယ်တွင် အပေါက်(with round sharp edged)ပါသည့် plate တစ်ခုဖြစ်သည်။ Orifice plate ကို ဖြတ်၍ စီးသည့် fluid ၏ Reynolds Number များသည့်အခါ flow rate နှင့် pressure drop တို့သည် အောက်ပါ ညီမျှခြင်းဖြင့် ဆက်စပ်နေသည်။

$$V = C \sqrt{\frac{2 \,\Delta P}{\rho}}$$

Orifice plate ကို အသုံးပြုသည့်အခါ flow coefficient C ကို measured area of the pipe and orifice opening တို့မှ တစ်ဆင့် သိနိင်(determine လုပ်နိုင်)သည်။

အခြားသော device များအတွက် flow coefficient C ကို လက်တွေ့စမ်းသပ်ချက်များ (experiment) လုပ်ယူရသည်။ ထိုကြောင့် orifice meter များကို အခြားသော flow meter များအား calibrate လုပ်ရာတွင် အသုံးပြုသည်။ Orifice meter များသည် ဖိအားကျဆင်းမှု(pressure drop)များ သောကြောင့် HVAC system များတွင် အသုံးပြုလေ့ မရှိပေ။ Reynolds Number နည်းသည့် flow များ(lamina flow)အတွက် accuracy ကျဆင်းနိုင်သည်။ အညစ်အကြေးများ နှင့် အပေါက်နှုတ်ခမ်းတစ်လျောက် ပွန်းတီးခြင်း(wear) တို့ကြောင့် HVAC system များတွင် အသုံးနည်းသည်။

၃.၉.၃ Venturi Meter

ပုံ(၃-၅၆)တွင် Venturi အမျိုးအစား flow meter ကို ဖော်ပြထားသည်။ Venturi meter နှင့် orifice meter တို့၏ အခြေခံသဘောတရား တူညီကြသည်။ အဝင်(inlet)နှင့်အထွက်(outlet)ကို ပြေပြစ်အောင် ပြုလုပ် ထားသောကြောင့် Venturi meter ၏ ဖိအားကျဆင်းမှု(pressure drop)နည်းသည်။ စီးနှုန်း များလာသည့်အခါ static pressure သည် velocity (kinetic energy)အဖြစ်သို့ ပြောင်းလဲသွားသည်။

အဝင်(inlet) မှ static pressure ကျဆင်းမှုကို တိုင်းယူခြင်းပြီး အောက်ပါညီမျှခြင်းကို အသုံးပြု၍ velocity ကို တွက်ယူနိုင်သည်။ Flow coefficient ကို စမ်းသပ်မှု(test) များလုပ်၍ ရယူနိုင်သည်။

$$V = C \sqrt{\frac{2 \,\Delta P}{\rho}}$$

ပုံ ၃-၅၇ The Herschel venturi meter with the associated flow pressure drop along its axis.

Venturi meter များကို steam flow measurement များတွင် အသုံးပြုလေ့ ရှိသည်။ Water flow measurement များ အတွက် အသုံးပြုလေ့ မရှိပေ။ စျေးနှုန်းမြင့်မားသောကြောင့် air flow measurement များအတွက် လုံးဝ အသုံးမပြုကြပေ။ Standard density ကို အသုံးပြု၍ ရေစီးနှုန်းအတွက် အောက်ပါ ညီမျှခြင်းဖြင့် ဖော်ပြနိုင်သည်။

HVAC Control and Building Automation Systems

 $V = 12.2 \sqrt{\Delta P}$ Equation 4-2

$$V = 12.2\sqrt{\Delta P}$$

where DP is in psi and V is in feet per second (fps).

ပုံ(၃-၅၈)တွင် ပိုက်အတွင်း၌ တပ်ဆင်ထားသည့် pitot flow sensor ကို ဖော်ပြထားသည်။ ပိုက်တွင်းရှိ velocity profile ပုံသဏ္ဌာန် ပျက်ယွင်းခြင်း(natural distortion)ကို လျော့နည်းစေရန်အတွက် Velocity pressure ကို တိုင်းယူသည့် port များသည် tube တစ်လျောက်တွင် တည်ရှိသည်။ Sensor tube များကြောင့် turbulence ဖြစ်ပေါ်ပြီး accuracy လျော့ကျခြင်းများ ဖြစ်ပေါ်နိုင်သည်။ Downstream ရှိ static pressure တန်ဖိုးများ မှားယွင်းနိုင်သည်။

Accuracy ပိုကောင်းစေရန်အတွက် အချို့သော ထုတ်လုပ်သူများ(manufacturers)သည် အဝိုင်း ပုံသဏ္ဌာန် အစား ပုံသဏ္ဌာန် အမျိုးမျိုးပြုလုပ်ကြသည်။

ပုံ(၃-၅၈)သည် Annubar flow sensor ပုံဖြစ်သည်။ Annubar sensors သည် bi-directional senor ဖြစ်သည်။ အချိုးညီ(symmetrical) သည် sensing port နှစ်ခု ပါဝင်သောကြောင့် အသွားနှင့် အပြန် နှစ်ဘက်လုံးကို တိုင်းနိုင်သည်။ Bi-directional pressure transmitter ကို အသုံးပြုရန် လိုသည်။ Bi-directional pressure transmitter ဆိုသည်မှာ သုညတန်ဖိုး အမှတ်(zero mark) မှ ပေါင်းဘက်(positive side) နှင့် အနူတ်ဘက် (negative side) နှစ်ဘက်စလုံးကို တိုင်းနိုင်သည့် transmitter ဖြစ်သည်။ သို့သော် HVAC system များတွင် နှစ်ဘက်စလုံးကို တိုင်းနိုင်သည့် (Bi-directional) sensor များ မလိုအပ်ပါ။ Primarysecondary piping system တပ်ဆင်ထားသည့် chilled water system ၌သာ decoupling pipe သို့မဟုတ် by pass pipe တစ်နေရာတွင်သာ အသုံးပြုရန်လိုသည်။

ကောင်းထက်ညွှန့်

၃.၉.၄ Displacement Flow Meters

စီးနေသည့် fluid stream ထဲသို့ လည်နိုင်သည့် ဒလက်များ ထားခြင်းဖြင့် တိုင်းယူသည့် flow meter ကို displacement flow meter ဟုခေါ်သည်။

Paddle flow switch

Paddle flow switch ကို 4-30 တွင် ဖော်ပြထားသည်။ ပိုက်ထဲတွင် စီးဆင်းနေမှု ရှိ၊ မရှိကို သိနိုင်ရန် အတွက် အသုံးပြုကြသည်။ Fluid flow ကြောင့် paddle ပြားကလေး ယိုင်သွားသည့် အခါတွင် switch ကို activate လုပ်ပေးခြင်းဖြင့် ပိုက်ထဲတွင် စီးဆင်းမှု ဖြစ်ပေါ်နေကြောင်း သိနိုင်သည်။ Air system များတွင် ပိုပေါ့ပါးပြီး ကြီးမားသည့် paddle ပြားကို အသုံးပြုနိုင်သည်။ "**Sail switch**" ဟုခေါ်လေ့ရှိသည်။ ပျက်စီးနိုင်သည်။ သံရေးတက်နိုင်သည်။ စိတ်ချရရန်အတွက် ပုံမှန် ပြုပြင်ထိန်းသိမ်းမှုများ ပြုလုပ်ရန် လိုအပ်သည်။

၃.၉.၅ Turbine Meter

ပုံ(၃-၆၁)တွင် turbine meter ကို ဖော်ပြထားသည်။ Fluid stream ထဲ၌ ထည့်ထားသည့် ဒလက်နှင့် ဆက်ထားသည့် propeller-shaped rotor လည်ပတ်သည့် အရေအတွက်ကို တိုင်းယူခြင်းဖြင့် စီနှုန်းကို သိနိုင်သည်။ HVAC system များတွင် water flow measurement များကို တိုင်းရန်အတွက် အများဆုံး အသုံးပြုလေ့ရှိသည်။ Magnetic sensor (metal rotor)ကို အသုံးပြု၍ အပတ်ရေကို တိုင်းယူခြင်းဖြစ်သည်။ Infrared light ၏ reflection ကို အသုံးပြု၍ အပတ်ရေကို တိုင်းယူနိုင်သည်။ Non-magnetic radio frequency impedance sensors ကို အသုံးပြု၍ အပတ်ရေကို တိုင်းယူနိုင်သည်။

Turbine meter များသည့် စီးဆင်းသည့် ဦးတည်ရာ နှစ်ဘက်လုံး(bi-directional)ကို တိုင်းနိုင်သည်။ Dual turbine meter ကို အသုံးပြု၍ accuracy ပိုကောင်းအောင် ပြုလုပ်နိုင်သည်။ Turbine နှစ်ခုကို ပြောင်းပြန်(opposite directions) တပ်ဆင်ထားသောကြောင့် counter-rotating rotor နှစ်ခုသည် swirling current များကို ခြေဖျက်(cancel out) ပစ်နိုင်သည်။

Turbine Meter	
High accuracy (.5% of rate)	Clean water applications only
High rangeability (up to 50:1)	NIST Traceable Factory Calibration
Compact design	Low cost, Easy to install
Fast response time	In and out of line, under pressure
Broad range of sizes	
Turbine Flowmeters	
Advantages	Disadvanteages
High Accuracy	Only For Low Viscosities
Suitable for Extreme Temperatures and	Moving Parts
Pressures	
Can Be Used On Gas or Liquid	Sensitive to Flow Profile

Pressure differential flowmeters အမျိုးအစားများ

Helical gear	Oval gear
Nutating disk	Rotary
Oscillating piston	

၃.၉.၆ Target Meter

ပုံ(၃-၆၂)တွင် target meter ကို ဖော်ပြထားသည်။ Drag-force meter ဟုလည်း ခေါ်လေ့ရှိသည်။ Flow ကြောင့်ဖြစ်ပေါ်သော paddle ပေါ်တွင် သက်ရောက်နေသည့် အားပမာက မှတစ်ဆင့် flow rate ကို တိုင်းနိုင်သည်။ Flow rate ပိုများလေ bending action ပိုများလေဖြစ်ပြီး stress ပိုများလိမ့်မည်။

Strain-gauge မှတစ်ဆင့် stress ပမာကာကို တိုင်းယူနိုင်သည်။ လှုပ်ရှားနေသော အစိတ်အပိုင်း (moving parts) မပါဝင်ခြင်းသည် အားသာချက်ဖြစ်သည်။

ე.ე. Vortex meter

Vortex meter များသည် ပိုက်အတွင်းသို့ ထည့်သွင်းထားသည့် sensor မှ တစ်ဆင့် လျှပ်စစ်နည်းဖြင့် flow rate ကို တိုင်းသည့် နည်းဖြစ်သည်။ Sensitive ဖြစ်ပြီး accuracy အလွန်ကောင်းသည်။ စျေးနှုန်းမြင့်မားသောကြောင့် HVAC system များတွင် အသုံးပြုလေ့ မရှိပေ။

ပုံ ၃-၆၅ <mark>Swirlmeter</mark>		
Vortex / Swirlmeter		
Advantage	Disadvantage	
No Moving Parts	Span Limitations Due to Viscosity	
For Liquid, Gas, or Steam	Flow Profile Sensitive (Vortex)	
Uneffected by Pressure, Temperature, or		
Density Changes.		
Wide Rangeability		
Vortex / Swirlmeter Benefits		
High Accuracy 0.50% of Rate	Versatile	
No Moving Parts	Electronics can be used for Diagnostics	
Minimal Upstream Piping	Works with Entrained Liquids	

Measures Low Flows

ວ.ອ.ອ Passive Flow Meters

Passive flow meter များသည် fluid stream ထဲသို့ obstruction ဖြစ်စေသည့် မည်သည့် အရာဝတ္တုများကိုမျှ မထည့်ဘဲ flow rate ကို တိုင်းတာသည်။ ထို့ကြောင့် ဖိအားကျဆင်းမှု(pressure drops) မဖြစ်ပေါ်ပေ။ Fluid stream အတွင်း၌ လှုပ်ရှားနေသော အစိတ်အပိုင်းများ ရှိမနေသောကြောင့် ပြုပြင် ထိန်းသိမ်းမှုများ ပြုလုပ်ရန် မလိုအပ်ပေ။

၃.၉.၉ Transit time ultrasonic meters

Transit time ultrasonic meter များသည် flow rate ကို တိုင်းရန်အတွက် sound waves ၏ ရွှေ့လျားသည့် အချိန်ကို တိုင်း၍ fluid velocity ကို တွက်ယူသည်။ ပုံ(၃-၆၆)တွင် Transit time ultrasonic meter ကို ဖော်ပြထားသည်။

ထောင့်တစ်ခု စောင်း၍ fluid ထဲသို့ ultrasonic sound wave ကို ပို့လွှတ်သည်။ ထိုနောက် downstream ၌ တပ်ဆင်ထားသည့် sensor မှ ပို့လွှတ်လိုက်သည့် ultrasonic sound wave ကို ပြန်ဖမ်း ယူသည်။

Ultrasonic wave ၏ သွားရန်ကြာရှိန် (travel time)ကို တိုင်း၍ average flow velocity ကို တွက်ရျက်ခြင်း ဖြစ်သည်။ Transducer နှစ်ခုရှိသည့် အနက် တစ်ခုသည် transmitter ဖြစ်ပြီး ကျန်တစ်ခုသည် receiver ဖြစ်သည်။ Transmitter ထောင့်တစ်ခု စောင်း၍ fluid ထဲသို့ ultrasonic sound wave ကို ပို့လွှတ်သည်။ ထိုနောက် downstream ၌ တပ်ဆင်ထားသည့် receiver မှ ပို့လွှတ်လိုက်သည့် ultrasonic sound wave ကို ပြန်ဖမ်းယူသည်။

ပိုက်၏ အပြင်ဘက်တွင် sensor များကို တပ်ဆင်ထားသည်။ Fully developed very clean water ၊ no air bubbles နှင့် straight flow အတွက် accuracy သည် ±1% of full range ဖြစ်သည်။ လက်တွေ့

တိုင်းတာမှုများတွင် accuracy သည် ±5%ထက် ပိုများလေ့ မရှိပေ။ Piping dimensions ၊ fluid properties နှင့် other practical limitation တို့ကြောင့် လက်တွေ့တိုင်းတာမှုများတွင် accuracy ကျဆင်းရခြင်း ဖြစ်သည်။

Ultrasonic Flowmeter တွင် doppler နှင့် time of flight ဟု၍ နှစ်မျိုးကွဲပြားသည်။

(∞) Doppler effect, used for dirty, slurry type flows

(a) Transit time measurement, used for clean fluids

Ultrasonic Flowmeters - Performance Considerations			
Reynolds number constraints	Installed without process shut down		
Entrained gas or particles for doppler	Straight upstream piping requirements		
Clean liquids for time of flight			
Ultrasonic Flowmeters			
Advantages	Disadvanteages		
No Moving Parts	For Liquids Only (limited gas)		
Unobstructed Flow Passage	Flow Profile Dependent		
Wide Rangeability	Errors Due To Deposits		

ວ.ອ.ວດ Magnetic flow meters

Magnetic flow meter များသည် magnetic field ကို အသုံးပြု၍ magnetic induction နည်းဖြင့် flow rate ကို တိုင်းတာခြင်း ဖြစ်သည်။ တိုင်းယူမည့် fluid သည် non-zero electrical conductance ဖြစ်ရမည်။ တစ်နည်းအားဖြင့် deionized water မဖြစ်စေရ။ အလွန်တိကျသော်လည်း ဈေးနှုန်းမြင့်မားသည်။ Turbulence ဖြစ်ရန် စက်ခဲသည့် sludges နှင့် slurrie များကိုလည်း တိကျစွာ တိုင်းယူနိုင်သည်။

HVAC Control and Building Automation Systems

ကောင်းထက်ညွှန့်

Turbulent Laminar Velocity or Velocity Flow Flow Profile Profile	Magnet Coil		
ပုံ ၃-၆၉ Electromagnetic principle as applied to a	working flow meter.		
Magnetic Flowmeters			
Advantages	Disadvanteages		
No moving parts to wear out	Liquid Must Be Conductive		
Very Wide Rangeability	Physical Pressure and Temperature Limits		
Ideal For Slurries			
no obstructions or restrictions to flow			
No pressure drop or differential			
Accommodate solids in suspension			
No pressure sensing points to block up			
Temperature independent			
Capable of measuring flow in either direction			
Magnetic Flowmeters Advantages Over Other Tea	chnologies		
No moving parts	Measure dirty liquids with solids		
No pressure drop	Measure highly corrosive fluids		
Flowrate independent of viscosity,	Very large turndown		
temperature, and density			
Minimum upstream piping requirements	Linear output		
Electronics interchangeable without regard to			
size			

Direct Measurement လုပ်နိုင်သည့် Mass Flowmeter များတွင် Thermal Dispersion အမျိုးအစား နှင့် Coriolis ဟူ၍ နှစ်မျိုး ကွဲပြားသည်။

၃.၉.၁၁ Mass Flow Meters

Coriolis force meter နှင့် angular momentum meter စသည့် mass flow meter များကို HVAC လုပ်ငန်းများတွင် mass flow meter များကို အသုံးပြုလေ့ မရှိပေ။ Thermal anemometer သို့မဟုတ် hot-wire anemometer ကို air flow measurement တိုင်းရာတွင် အလွန် အသုံးများသည်။

ပုံ ၃-၇၀ 4-34 Thermal Anemometer

ပုံ(၃-ဂုဂ)တွင် thermal anemometer ကို ဖော်ပြထားသည်။ Air stream ထဲသို့ အပူပေးထားသည့် heated probe ကို ထည့်သွင်း၍ mass flow rate ကို တိုင်းသည်။ လေများ ဖြတ်သန်း သွားသောကြောင့် heated probe သည် အေးသွားသည်။ Probe ကို temperature sensor နှင့် electric resistance-heating element တို့ဖြင့် ပြုလုပ်ထားသည်။

Heated probe ကို အပူချိန် 200°F ခန့်တွင် ထိန်းထားနိုင်ရန်အတွက် လိုအပ်သည့် electrical current ကို တိုင်းခြင်းဖြင့် velocity signal ကို ရနိုင်သည်။ တိုင်းယူသည့်အချိန်၌ လေ၏ သိပ်သည်းဆ(air density) မပြောင်းလဲဟု ယူဆထားသည်။

အချို့သော thermal anemometer များတွင် heating element သည်ပင် temperature sensor ဖြစ်သည်။ Self-heated thermistor ကိုလည်း သုံးလေ့ရှိသည်။ Temperature sensor ကို upstream တွင် ထား၍ air density ကို သိအောင် entering air temperature ကို တိုင်းယူခြင်းဖြင့် accuracy ပိုကောင်းအောင် ပြုလုပ်နိုင်သည်။

Thermal anemometer များ၏ အားသာချက်မှာ pitot tube sensor များနှင့် နှိုင်းယှဉ်လျှင် အလွန်နိမ့်သည့် air velocity ကို တိုင်းနိုင်သည်။ Commercial model များအတွက် 500 fpm အောက်တွင် ±2% to ±3% accuracy ရနိုင်သည်။ 100 fpm ထိအောင် တိုင်းနိုင်သည်။ သို့သော် accuracy သည် ±20 fpm ဖြစ်သည်။ Anemometer ဖြင့် velocity 150 to 5,000 fpm အတွင်း တိုင်းလျှင် လက်ခံနိုင်သည့် accuracy ပေးနိုင်သည်။

Pitot sensor များသည် 400 fpm (0.01 inch wg) တွင် တိကျရန် အလွန်ခက်ခဲသည်။ Pitot sensor များသည် velocities range ကျဉ်းကျဉ်ကိုသာ တိုင်းနိုင်သည်။ ထို့ကြောင့် VAV system များတွက် thermal anemometer များသည် အကောင်းဆုံး ဖြစ်သည်။ Thermal anemometer ကို fan inlet တွင် တပ်ဆင်၍လည်း အသုံးပြုနိုင်သည်။

ပုံ(၃-၇၂) Pitot tube sensor များသည် လေယာဉ်ပုံဖြာ မြန်နှုန်း(speed of aircraft)ကို တိုင်းရာတွင် အများဆုံး အသုံးပြုလေ့ရှိသည်။ HVAC application များတွင် လေစီးနှုန်း နှင့် ရေစီးနှုန်း နှစ်မျိုးလုံးကို တိုင်းရန် အတွက် အသုံးပြုလေ့ရှိသည်။

ပုံ(၃-၇၃) တွင် ပြထားသည့်အတိုင်း အလယ်မှ ပေါက်သည် total pressure တန်ဖိုကို တိုင်းပေးသည်။ ဘေးမှ အပေါက်သည် static pressure ကိုတိုင်းပေးသည်။ Total pressure တန်းဖိုမှ static pressure တန်ဖိုးကို နှုတ်လျင် velocity pressure တန်းဖိုးကို ရရှိသည်။

Pitot tube velocity differential pressure တန်ဖိုးမှ standard density အခြေအနေတွင် ဖြစ်ပေါ် သည့် air flow ကို အောက်ပါ ညီမျှခြင်းကို အသုံးပြု၍ တွက်ယူနိုင်သည်။

$$V = 4005\sqrt{\Delta P}$$

(Equation 4-3)

where DP is measured in inches of water gauge (wg) and V is measured in feet per minute (fpm).

Figure 4-37 shows an air flow measuring station (FMS) commonly used in duct applications. In large ducts, the FMS is composed of an array of pitot sampling tubes the pressure signals of which are averaged. This signal is fed to a square root extractor, which is a transmitter that converts the differential pressure signal into a velocity signal. (With digital control systems, this calculation can be made in software with improved accuracy over the use of a square root extractor.) The velocity measured in this way is an approximate average of duct velocity, but it is not a precise average because pressure and velocity are not proportional (the average of the

square of velocity is not equal to the average of the velocity).

Where fan air flow rate measurement is required, the preferred location of the pitot sensor is in the inlet of the fan. Two arrangements are available. The first, which can be used with almost any fan, has two bars with multiple velocity pressure and static pressure ports mounted on either side of the fan axis. The second, much less common arrangement has multiple pinhole pressure taps that are built into the fan inlet by the fan manufacturer. Differential pressure is measured from the outer point of the inlet to the most constricted point, much like a Venturi meter.

Locating the air flow sensor in the fan inlet has many advantages compared to a duct mounted pitot array. First, air flow is generally stable in the inlet (except when inlet vanes are used, in which case this location is not recommended) and velocities are high, which increases accuracy because the differential pressure signal will be high. Even where inlet vanes are used, a location in the mixed air plenum space could be found. This location also reduces costs because the sensor array is smaller than the array required in a duct. Perhaps the most important advantage of this location is that it obviates the need to provide long straight duct sections required for the duct mounted array. The space needed for these duct sections seldom seems to be available in modern HVAC applications where the operating space occupied by HVAC systems is heavily

scrutinized by the owner and architect, reduced to its smallest area possible, and consciously minimized.

ວ.ອ.ງ Displacement Flow Meters:

စီးနေသည့် air stream ထဲသို့ လည်နိုင်သည့် ဒလက်များ ထားခြင်းဖြင့် တိုင်းယူသည့် flow meter ကို Displacement flow meter ဟုခေါ် သည်။

Propeller or Rotating Vane Anemometers: Propeller or rotating vane anemometers are commonly used hand-held devices for measuring air velocity. They are seldom used as sensors for control systems because they are accurate only for measuring velocity at a single point, and velocity in a typical duct system varies considerably over the duct face.

ບໍ່ ၃-၇၄ Rotating Vane Anemometers:

Table 4-6 Table of Flow Sensors (Hegberg, 2001–2002)				
Velocity and Flow Sensor Summary				
Sensor Type	Primary Use	Accuracy & Maximum Range	Advantage	Disadvantage
Orifice plate	Water	±1–5%, 5:1	Inexpensive, great selection	Sharp edge can erode lowering accuracy
Venturi	Water, high- velocity air		Low head loss	Expensive, large
Turbine	Water	±0.15–0.5%, up to 50:1		Blades susceptible to damage
Ultrasonic	Water	0.25–2%, 100:1		
Vortex shedding	Water	±0.5–1.5%, 25:1		
Pitot tube	Air flow	Minimum velocity 400 fpm	Inexpensive	Can plug with dirt, limited in lowest velocity
Thermal anemometer	Air flow	±20 fpm at 100 fpm	Good at low velocities, small sensor easy to insert into duct	Dirt can reduce accuracy

Table 4-6 summarizes some of the velocity and flow sensors that we have been discussing.

Rotating	Hand-held	Inexpenisve	Not robust, large
Vane	Air flow		

Electromagnetic

The operating principle of an electromagnetic flow meter (8) is based on the fundamental principle that an electromotive force (emf) of electric potential, E, is induced in a conductor of length, L, which moves with a velocity, U, through a magnetic field of magnetic flux, B. Simply, when an electrically conductive liquid moves through a magnetic field, a voltage is induced in the liquid at a right angle to the field. The voltage is detected by metal electrode sensors with the voltage magnitude and polarity directly proportional to the volume flow rate and the flow direction, respectively. This physical behavior was first recorded by Michael Faraday (1791–1867). In principle,

 $E = U \times B \cdot L$

where symbols in bold face are vector quantities.

The electromagnetic flow meter comes commercially as a packaged flow device, which is installed directly in-line and connected to an external electronic output unit. Special designs include an independent flow sensor unit that can clamp over a nonmagnetic pipe, a design favored to monitor blood flow rate through major arteries during surgery. The sensor is connected to a control unit bywiring. External sensors are also available as an in-line union, which can measure flow rate in either direction with instantaneous changes (Figure 10.16).

The electromagnetic flow meter has a very low pressure loss associated with its use due to its open tube, no obstruction design, and is suitable for installations that can tolerate only a small pressure drop. It can be used for either steady or unsteady flow measurements, providing either timeaveraged or instantaneous data in the latter. This absence of internal parts is very attractive for metering corrosive and "dirty" fluids. The operating principle is independent of fluid density and viscosity, responding only to average velocity, and there is no difficulty with measurements in either laminar or turbulent flows, provided that the velocity profile is reasonably symmetrical. Uncertainty down to 0.25% (95%) of the measured flow rate can be attained, although values from 1% to 5% (95%) are more common for these meters in industrial settings. The fluid must be conductive, but the minimum conductivity required depends on a particular meter's design. Fluids with values as low as 0.1 microsieman (msieman)/cm have been metered. Adding salts to a fluid increases its conductivity.

Stray electronic noise is perhaps the most significant barrier in applying this type of meter. Grounding close to the electrodes and increasing fluid conductivity reduce noise.

2.00 CALIBRATION METHODOLOGY

CALIBRATION

- It's the procedure for determining the correct value of the measurand by comparision with the standard ones.
- The standard of device with which comparison is made is called a standard instrument.
- The instrument which is unknown and is to be calibrated is called test instrument.
- In calibration test instrument is compared with the standard instrument.

DIRECT COMPARISON

- METER CALIBRATION
- GENERATOR CALIBRATION
- TRANSDUCER CALIBRATION

INDIRECT COMPARISON

- METER CALIBRATION
- GENERATOR CALIBRATION
- TRANSDUCER CALIBRATION

Contents

၃.၁ Classification Of Instruments1	
၃.၂ အဓိပ္ပာယ် ဖွင့်ဆိုချက်များ(Definition of Terminology)5	
၃.၃ Sensor Performance Characteristic10	
ې.ې Selection Requirements	
၃.၅ Classification of Error13	
၃.၆ Temperature Sensors14	
၃.၆.၁ Principles of Temperature Measurement	
၃.၆.၂ Thermocouple	
၃.၆.၃ Thermistors	
၃.၆.၄ Resistance Temperature Detectors (RTDs)	
၃.၆.၅ Integrated Circuit Temperature Sensors	
၃.၆.၆ Summary of temperature sensors	
გ.წ.ე Temperature Sensor's Measuring Errors	
p.ე Moisture Sensors	

	ວ.ດູ.ວ Relative Humidity Sensors	
	۲.၃.၂ Resistance-type humidity sensors	
	۲.၇.۶ Capacitance-Type Humidity Sensors	
	۶.၇.၄ Lithium Chloride Dew-point Sensors:	
	ຊ.ດ.၅ Chilled-Mirror Dew-point Sensors:	
	ې.م.۶ Psychrometers	
ç	ې.ه Pressure Sensors	3
•	ັ ວ.໑.ວ Summary of pressure sensors for BAS applications	
	ົຸ ວ.໑.၂ Mechanical Pressure Gauges:	
	ວ.ຄ.ວ Diaphragm sensor	
	ວ.໑.၄ Potentiometer	
	ວ.໑.၅ Electrical Pressure Guages:	
	၃.၈. ၆ Capacitance pressure detector	
	·	
ç	ج.ج Flow Sensors and Meters	9
9	၃.၉.၁ Differential Pressure Flow Meters	9
9	၃.၉.၁ Differential Pressure Flow Meters ၃.၉.၁ Differential Pressure Flow Meters	9
9	၃.၉.၁ Differential Pressure Flow Meters	9
9	၃.၉.၃ Differential Pressure Flow Meters	9
9	p.e Flow Sensors and Meters	9
9	P.e Flow Sensors and Meters 3 P.e.o Differential Pressure Flow Meters 3 P.e.J Orifice Meter 3 P.e.o Venturi Meter 3 P.e.o Displacement Flow Meters 3 P.e.o Turbine Meter 3 P.e.o Target Meter 3	9
9	P.e. Flow Sensors and Meters 3 P.e.o Differential Pressure Flow Meters 3 P.e.J Orifice Meter 3 P.e.o Venturi Meter 3 P.e.o Displacement Flow Meters 3 P.e.o Turbine Meter 3 P.e.o Target Meter 3 P.e.o Vortex meter 3	9
9	P.e. Flow Sensors and Meters	9
9	P.e Flow Sensors and Meters 3 P.e. Differential Pressure Flow Meters 3 P.e. Orifice Meter 3 P.e. Venturi Meter 3 P.e. Pisplacement Flow Meters 3 P.e. Displacement Flow Meters 3 P.e. Turbine Meter 3 P.e. Target Meter 3 P.e. Pransit time ultrasonic meters 3	9
9	P.e Flow Sensors and Meters	9
9	P.e. Flow Sensors and Meters	9
9	P.e Flow Sensors and Meters	9

Coriolis		
Advantages	Disadvanteages	
Direct Mass Measurement	High Purchase Price	

High Accuracy	High Installation Cost
Additional Density Measurement	Size Limitations
Uneffected By Flow Profile	Vibration Sensitive